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Testing Inequality Restrictions in Multifactor
Asset-Pricing Models

Abstract

We develop an inequality constraints testing framework to assess the consistency of several mul-

tifactor models with the time-series and cross-sectional restrictions imposed by the intertemporal

CAPM (ICAPM). Our tests of joint sign restrictions take into account the estimation error in the

model parameters as well as the uncertainty arising from potential model misspecification. With a

few exceptions, we cannot reject the null of consistency of the considered models with the ICAPM

restrictions when using size and book-to-market, and size and momentum sorted portfolios as test

assets. As argued by Fama (1991), the ICAPM may be a “fishing license” after all.

JEL Classification: G12, C12, C52



1. Introduction

Multifactor asset-pricing models seek to explain cross-sectional differences in expected asset returns

in terms of exposures to one or more sources of systematic risk. The capital asset pricing model

(CAPM) of Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966) is the cornerstone

of modern asset-pricing theory. It posits that the expected return on an asset is proportional to its

covariance with the return on aggregate market wealth. The CAPM is a single-period model which,

as shown by Fama (1970), can be treated as if it holds intertemporally only if the preferences and

future investment opportunities are constant. However, as shown by Merton (1973), the CAPM

does not hold in an intertemporal setting when the investor faces a state-dependent investment

opportunity set.

The intertemporal CAPM (ICAPM) of Merton (1973) extends the CAPM to a multi-period

framework. Unlike the single-period maximizer of the CAPM who does not take into account events

beyond the current period, the intertemporal maximizer of the ICAPM also takes into account the

relationship between current returns and returns that will be available in the future. This gives

rise to additional sources of risk that an investor has to hedge against. According to the ICAPM,

the expected return on an asset is not only proportional to the asset’s covariance with the market

portfolio return, but also to the asset’s covariance with changes in the investment opportunity set.

Following Cochrane (2005), the cross-sectional equilibrium relation between expected return and

risk in the context of the ICAPM can be expressed as follows:

Et(Ri,t+1)−Rf,t = λCovt(Ri,t+1, Rm,t+1) + λzCovt(Ri,t+1,∆zt+1), (1)

where Ri denotes the expected return on asset i, Rf denotes the risk-free rate, Rm is the return

on aggregate market wealth or simply the market portfolio, λ is the market price of covariance

risk (which corresponds to the coefficient of relative risk aversion of the representative investor),

λz is the intertemporal price of covariance risk, and ∆z denotes innovations in state variables that

capture uncertainty about future investment opportunities.

The second term of equation (1) is the expected return component that arises as compensation

for unexpected changes in the investment opportunity set. These changes in investment oppor-

tunities are captured by the state variables z, which are essentially variables that describe the

conditional distribution of returns that will be available in the future. The fact that the ICAPM
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does not explicitly identify these state variables has prompted Fama (1991) to label it a “fishing

license”, in the sense that it essentially allows applied researchers to choose from a wide range of

potential risk factors and use the ICAPM as a theoretical justification for relatively ad-hoc empir-

ical specifications. Although the ICAPM does not explicitly tell us what the state variables are,

there are several restrictions that candidate state variables need to satisfy for their innovations to

be considered candidate risk factors in an ICAPM setting (Maio and Santa-Clara, 2012). First,

the candidate state variables should predict changes in the investment opportunity set. Second,

if a state variable predicts positive (negative) changes in investment opportunities in the time-

series, then its innovation should earn a positive (negative) intertemporal price of covariance risk

in the cross-sectional relation. Finally, the market price of risk should be an economically plausible

estimate of the coefficient of relative risk aversion of the representative investor.

Therefore, it would seem that the ICAPM cannot be used as a theoretical justification for any

multifactor model as it imposes several restrictions on the time-series and cross-sectional behavior of

the candidate state variables and their innovations. However, the mere existence of these theoretical

restrictions would not bear much weight against the claim that the ICAPM is a “fishing license” if

these restrictions were indeed rarely violated in practice. Current research provides mixed evidence

as to whether the ICAPM restrictions are satisfied in empirical tests of multifactor asset-pricing

models. Maio and Santa-Clara (2012) consider eight popular multifactor asset-pricing specifications

and find that most of these models are not consistent with an ICAPM interpretation. Lutzenberger

(2015) replicates the Maio and Santa-Clara (2012) study for the European stock market and reaches

similar conclusions. On the other hand, Boons (2016) focuses on state variables that forecast

macroeconomic activity and the prices of covariance risk that the innovations in these state variables

earn in a large cross-section of individual stocks. He finds consistency of the considered models

with the ICAPM. Cooper and Maio (2018) study traded factor models and focus in particular on a

number of recent prominent models incorporating investment and profitability factors. They find

that the models studied are ”to a large degree compatible with the ICAPM framework” but none

of them satisfies all the restrictions imposed by the ICAPM. Barroso, Boons and Karehnke (2019)

focus on non-traded factor models, and account for time-variation in the risk premia by analyzing

the conditional asset-pricing implications of the ICAPM. They find that conditional risk premia in

a large cross-section of individual stocks are consistent in sign with how the state variables predict
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consumption growth in the time-series. Despite the lack of consensus, what all these studies have

in common is the fact that the consistency of the models with the restrictions imposed by the

ICAPM is assessed through a visual exercise whereby the researcher compares the signs of the

slope estimates in the predictive regressions with the signs of the price of covariance risk estimates

in the cross-sectional regressions.

We present a rigorous econometric framework to formally evaluate the consistency of a mul-

tifactor model with the time-series and cross-sectional restrictions imposed by the ICAPM and

provide an in-depth empirical analysis to demonstrate the relevance of our methodological results.

We focus on the empirical performance of nine multifactor models using two different sets of test

assets and different estimation methods. First, we run multiple predictive ordinary least squares

(OLS) time-series regressions to estimate the slope coefficients associated with the state variables.

This allows us to obtain an a priori knowledge of the sign restrictions that the prices of covariance

risk must satisfy for the various multifactor models to receive an ICAPM interpretation. Second,

we estimate the prices of covariance risk by running two-pass cross-sectional regressions of aver-

age realized excess returns on the estimated covariances between the test asset returns and the

innovations in the state variables (see Kan, Robotti, and Shanken (2013)). The estimation of the

prices of covariance risk is performed using OLS, generalized least squares (GLS), and weighted

least squares (WLS) weighting schemes. Third, we develop and implement a multivariate inequality

test, based on Wolak (1987, 1989), to determine whether the signs of the prices of covariance risk

are consistent with the signs of the slope coefficients in the predictive regressions. This allows us

to go beyond the common practice of informally comparing the signs of the estimated coefficients

in the predictive regressions with the signs of the estimated prices of covariance risk in the cross-

sectional regressions. Our methods account for the estimation error in the covariances and for the

fact that the consistency of a multifactor model with the implications of the ICAPM should be

evaluated using tests of joint sign restrictions across factors. Importantly, in the estimation of the

prices of covariance risk and in the tests of the sign restrictions, we employ asymptotic standard

errors that are robust to potential model misspecification in addition to the traditional standard

errors computed under the assumption that the model is correctly specified.

Our testing methodology delivers conclusions that are substantially different from the ones

reached by following the common practice of visually comparing sign estimates that is used in the
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existing literature. If we simply compare the signs of the estimates, we find sign consistency in 20

out of 54 cases, which suggests that most multifactor models do not satisfy the restrictions imposed

by the ICAPM. However, if we apply our multivariate inequality test, we find that in 43 out of

54 cases we do not have enough evidence to reject the null hypothesis of sign consistency at the

5% level, which indicates that most models do satisfy the ICAPM restrictions. Another important

finding is that accounting for potential model misspecification can make a significant difference

in terms of the conclusions reached. When the test statistic is computed using the traditional

Fama and MacBeth (1973) standard errors, we obtain sign consistency in 32 out of 54 cases, but

when misspecification-robust standard errors are used, the sign restrictions are satisfied in 43 out

of 54 cases. Moreover, we find that the use of misspecification-robust standard errors makes a

substantial difference when the correlation between the returns on the test assets and the factors

is low, as it is the case when using size and momentum sorted portfolios (see Kan, Robotti, and

Shanken (2013) for a discussion of this point). Specifically, when the 25 size and momentum sorted

portfolios are used as test assets, the sign consistency hypothesis is rejected in 17 out of 27 cases if

the test statistics are computed using Fama and MacBeth (1973) standard errors but only in 8 out

of 27 cases if misspecification-robust standard errors are used. On the other hand, when the test

assets are the 25 size and book-to-market sorted portfolios, the test statistics based on the Fama

and MacBeth (1973) asymptotic variance indicate rejection of the null in only 5 out of 27 cases,

whereas the misspecification-robust test statistics indicate rejection in 3 out of 27 cases.

The rest of the paper is organized as follows. Section 2 presents an asymptotic analysis of the

estimates of the prices of covariance risk under potentially misspecified models. In addition, we

provide the limiting distribution of the sample cross-sectional R2. Finally, we develop a multiple

sign restriction test and show how this test accounts for estimation and model misspecification

uncertainty. Section 3 presents our main empirical findings and Section 4 concludes. The proofs of

the propositions are provided in the Appendix.

2. Asymptotic analysis under potentially misspecified models

As discussed in the introduction, an asset-pricing model seeks to explain cross-sectional differences

in expected asset returns in terms of asset exposures computed relative to the model’s systematic

economic factors. The two-pass cross-sectional regression (CSR) methodology has become the most
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popular approach for estimating and testing linear asset-pricing models. Despite the existence of

many variations of the CSR methodology, the basic approach always involves two steps or passes. In

the first pass, the betas of the test assets are estimated from OLS time-series regressions of returns

on some common factors. In the second pass, the returns on the test assets are regressed on the

betas estimated from the first pass. The intercept and the slope coeficients from the second-pass

CSR are the estimates of the zero-beta rate and factor risk premia.

Let f be a K-vector of factors and R a vector of excess returns (i.e., returns on zero investment

portfolios) on N test assets. We define Y = [f ′, R′]′ and its mean and covariance matrix as

µ = E[Y ] ≡

[
µf

µR

]
, (2)

V = Var[Y ] ≡

[
Vf Vf,R

VR,f VR

]
, (3)

where V is assumed to be positive definite. The multiple regression betas of the N assets with

respect to the K factors are defined as β = VR,fV
−1
f . These are measures of systematic risk or the

sensitivity of the asset returns to the factors. In addition, we denote the covariance matrix of the

residuals of the N assets by Σ = VR − VR,fV −1
f Vf,R.

In the following analysis, we focus on an excess returns specification of the CSR methodology.

This essentially involves constraining the zero-beta rate to equal the risk-free rate, a practice that is

common in other parts of the empirical asset-pricing literature. For example, studies that focus on

time-series “alphas” when all factors are traded impose this restriction (see, for example, Gibbons,

Ross, and Shanken (1989)). We implement the zero-beta rate restriction in the CSR context by

working with test asset returns in excess of the T-bill rate, while excluding the constant from the

expected return relations. Thus, the proposed K-factor beta-pricing model specifies that asset

expected excess returns are linear in the betas, i.e.,

µR = βγ, (4)

where β is assumed to be of full column rank and γ is a vector consisting of the risk premia on the

K factors. When the model is misspecified, the pricing-error vector, µR−βγ, will be nonzero for all

values of γ. In that case, it makes sense to choose γ to minimize some aggregation of pricing errors.

Denoting by W an N × N symmetric positive-definite weighting matrix, we define the (pseudo)
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risk premia as the choice of γ that minimizes the quadratic form of pricing errors:

γW = argminγ(µR − βγ)′W (µR − βγ) = (β′Wβ)−1β′WµR. (5)

The corresponding pricing errors of the N assets are then given by

eW = µR − βγW = [IN − β(β′Wβ)−1β′W ]µR. (6)

In addition to the pricing errors, researchers are often interested in a normalized goodness-

of-fit measure for a model. A popular measure is the cross-sectional R2. Following Kandel and

Stambaugh (1995), this is defined as

ρ2
W = 1− Q

Q0
, (7)

where

Q0 = µ′RWµR, (8)

Q = e′WWeW = µ′RWµR − µ′RWβ(β′Wβ)−1β′WµR. (9)

Note that 0 ≤ ρ2
W ≤ 1 and it is a decreasing function of the aggregate pricing errors Q = e′WWeW .

Thus, ρ2
W is a natural measure of goodness of fit.

While the betas are typically used as the regressors in the second-pass CSR, there is a potential

issue with the use of multiple regression betas when K > 1: in general, the beta of an asset with

respect to a particular factor depends on what other factors are included in the first-pass time-

series OLS regression. As a consequence, the interpretation of the risk premia γ in the context of

model selection becomes problematic. To overcome this problem, in the subsequent analysis we

focus on an alternative second-pass CSR that uses the covariances VR,f instead of the betas β as

the regressors.1 Let λW be the choice of coefficients that minimizes the quadratic form of pricing

errors:

λW = argminλ(µR − VR,fλ)′W (µR − VR,fλ) = (Vf,RWVR,f )−1Vf,RWµR. (10)

Given (5) and (10), there is a one-to-one correspondence between γW and λW :

λW = V −1
f γW . (11)

1Another solution to this problem is to use simple regression betas as the regressors in the second-pass CSR, as in
Chen, Roll, and Ross (1986) and Jagannathan and Wang (1996, 1998). Kan and Robotti (2011) provide asymptotic
results for the CSR with simple regression betas under potentially misspecified models.

6



It is easy to see that the pricing errors from this alternative second-pass CSR, eW = µR−VR,fλW ,

are the same as those in (6). It follows that the ρ2
W for these two CSRs are also identical. However,

it is important to note that unless Vf is a diagonal matrix, λW,i = 0 does not imply γW,i = 0, and

vice versa (see Kan, Robotti, and Shanken, 2013, for a detailed discussion of this point).

It should be emphasized that unless the model is correctly specified, γW , λW , eW , and ρ2
W

depend on the choice of W . Popular choices of W in the literature are W = IN (OLS CSR),

W = V −1
R (GLS CSR), and W = Σ−1

d (WLS CSR), where Σd = Diag(Σ). To simplify the notation,

we suppress the subscript W from γW , λW , eW , and ρ2
W when the choice of W is clear from the

context.

We now turn to estimation of the models. Let Yt = [f ′t , R
′
t]
′, where ft is the vector of K

proposed factors at time t and Rt is the vector of N excess returns on the test assets at time t. We

assume the time series Yt is jointly stationary and ergodic, with finite fourth moment. Suppose we

have T observations on Yt and denote the sample moments of Yt by

µ̂ =

[
µ̂f

µ̂R

]
=

1

T

T∑
t=1

Yt, (12)

V̂ =

[
V̂f V̂f,R

V̂R,f V̂R

]
=

1

T

T∑
t=1

(Yt − µ̂)(Yt − µ̂)′. (13)

When the weighting matrix W is known (say OLS CSR), we can estimate λW in (10) by

λ̂ = (V̂f,RWV̂R,f )−1V̂f,RWµ̂R. (14)

In the GLS and WLS cases, the weighting matrixW involves unknown parameters and, therefore, we

need to substitute a consistent estimate of W , say Ŵ , in (14). This is typically the corresponding

matrix of sample moments, Ŵ = V̂ −1
R for GLS and Ŵ = Diag(Σ̂)

−1
= Σ̂−1

d for WLS, where

Σ̂ = V̂R − V̂R,f V̂ −1
f V̂f,R.

The sample measure of ρ2 is similarly defined as

ρ̂2 = 1− Q̂

Q̂0

, (15)

where Q̂0 and Q̂ are consistent estimators of Q0 and Q in (8) and (9), respectively. When W is
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known, we estimate Q0 and Q using

Q̂0 = µ̂′RWµ̂R, (16)

Q̂ = µ̂′RWµ̂R − µ̂′RWV̂R,f (V̂f,RWV̂R,f )−1V̂f,RWµ̂R. (17)

When W is not known, we replace W with Ŵ .

2.1. Asymptotic distribution of λ̂ under potentially misspecified models

When computing the standard error of λ̂, researchers typically rely on the asymptotic distribution

of λ̂ under the assumption that the model is correctly specified. In the following proposition, we

relax this assumption and provide general expressions for the asymptotic variance of λ̂ for the OLS,

GLS, and WLS cases under potential model misspecification.

Proposition 1. Under a potentially misspecified model, the asymptotic distribution of λ̂ is given

by
√
T (λ̂− λ)

A∼ N(0K , V (λ̂)), (18)

where

V (λ̂) =
∞∑

j=−∞
E[hth

′
t+j ]. (19)

To simplify the expressions for ht, we define Gt = VR,f − (Rt−µR)(ft−µf )′, H = (Vf,RWVR,f )−1,

A = HVf,RW , λt = ARt, ut = e′W (Rt−µR), and Ψt = Diag(εtε
′
t), where εt = Rt−µR−β(ft−µf ).

(a) With a known weighting matrix W , λ̂ = (V̂f,RWV̂R,f )−1V̂f,RWµ̂R and

ht = (λt − λ) +AGtλ+H(ft − µf )ut. (20)

(b) For GLS, λ̂ = (V̂f,RV̂
−1
R V̂R,f )−1V̂f,RV̂

−1
R µ̂R and

ht = (λt − λ) +AGtλ+H(ft − µf )ut − (λt − λ)ut. (21)

(c) For WLS, λ̂ = (V̂f,RΣ̂−1
d V̂R,f )−1V̂f,RΣ̂−1

d µ̂R and

ht = (λt − λ) +AGtλ+H(ft − µf )ut −AΨtΣ
−1
d e. (22)

When the model is correctly specified, we have:

ht = (λt − λ) +AGtλ. (23)
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Proof. See Appendix.

To conduct statistical tests, we need a consistent estimator of V (λ̂). This can be obtained by

replacing the ht’s with their sample counterparts ĥt’s. In particular, if ht is uncorrelated over time,

then we have V (λ̂) = E[hth
′
t], and its consistent estimator is given by

V̂ (λ̂) =
1

T

T∑
t=1

ĥtĥ
′
t. (24)

When ht is autocorrelated, one can use Newey and West’s (1987) method to obtain a consistent

estimator of V (λ̂).

Inspection of (20) reveals that there are three sources of asymptotic variance for λ̂. The first

term λt− λ measures the asymptotic variance of λ̂ when the true covariances are used in the CSR.

For example, if Rt is i.i.d., then λt is also i.i.d. and we can use the time-series variance of λt to

compute the standard error of λ̂. This coincides with the popular Fama and MacBeth (1973)

method. Since the covariances are estimated with error, an errors-in-variables (EIV) problem

is introduced in the second-pass CSR. The second term AGtλ is the EIV adjustment term that

accounts for the estimation errors in the estimated covariances. The first two terms together give

us the V (λ̂) under the correctly specified model. When the model is misspecified (e 6= 0N ), there

is a third term H(ft − µf )ut, which we call the misspecification adjustment term. Traditionally,

this term has been ignored by empirical researchers. Comparing (21) and (22) with the expression

for ht in (20), we see that there is an extra term in ht associated with the use of Ŵ instead of W .

This fourth term vanishes if the weighting matrix W is known.

2.2. Asymptotic distribution of the sample cross-sectional R2

The sample R2 (ρ̂2) in the second-pass CSR is a popular measure of goodness of fit for a model.

A high ρ̂2 is viewed as evidence that the model under study does a good job of explaining the

cross-section of expected returns. Lewellen, Nagel, and Shanken (2010) point out several pitfalls to

using this approach and explore simulation techniques to obtain approximate confidence intervals

for ρ2.2 In this subsection, we provide a formal statistical analysis of ρ̂2.

2Jagannathan, Kubota, and Takehara (1998), Kan and Zhang (1999), and Jagannathan and Wang (2007) use
simulations to examine the sampling errors of the cross-sectional R2 and risk premium estimates under the assumption
that one of the factors is “useless,” that is, independent of returns.
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The asymptotic distribution of ρ̂2 crucially depends on the value of ρ2. When ρ2 = 1 (that

is, a correctly specified model), the asymptotic distribution serves as the basis for a specification

test of the asset-pricing model. This is an alternative to the various multivariate asset-pricing

tests that have been developed in the literature. Although all of these tests focus on an aggregate

pricing-error measure, the R2-based test examines pricing errors in relation to the cross-sectional

variation in expected returns, allowing for a simple and appealing interpretation. At the other

extreme, the asymptotic distribution when ρ2 = 0 (a misspecified model that does not explain any

of the cross-sectional variation in expected returns) permits a test of whether the model has any

explanatory power for expected returns.

When 0 < ρ2 < 1 (a misspecified model that provides some explanatory power), the case of

primary interest, ρ̂2 is asymptotically normally distributed around its true value. It is readily

verified that the asymptotic standard error of ρ̂2 approaches zero as ρ2 → 0 or ρ2 → 1, and thus it

is not monotonic in ρ2. The asymptotic normal distribution of ρ̂2 breaks down for the two extreme

cases (ρ2 = 0 or 1) because, by construction, ρ̂2 will always be above zero (even when ρ2 = 0) and

below one (even when ρ2 = 1).

Proposition 2. In the following, we set W to be V −1
R and Σ−1

d for the GLS and WLS cases,

respectively.

(a) When ρ2 = 1,

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K∑
j=1

ξj
Q0

xj , (25)

where the xj’s are independent χ2
1 random variables, and the ξj’s are the eigenvalues of

P ′W
1
2SW

1
2P, (26)

where P is an N × (N − K) orthonormal matrix with columns orthogonal to W
1
2VR,f , S is the

asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt, and yt = 1−λ′(ft−µf ) is the normalized stochastic

discount factor (SDF).

(b) When 0 < ρ2 < 1,

√
T (ρ̂2 − ρ2)

A∼ N

0,

∞∑
j=−∞

E[ntnt+j ]

 , (27)
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where

nt = 2
[
−utyt + (1− ρ2)vt

]
/Q0 for known W, (28)

nt =
[
u2
t − 2utyt + (1− ρ2)(2vt − v2

t )
]
/Q0 for Ŵ = V̂ −1

R , (29)

nt =
[
−2utyt + e′Γte+ (1− ρ2)(2vt − µ′RΓtµR)

]
/Q0 for Ŵ = Σ̂−1

d , (30)

with Γt = Σ−1
d ΨtΣ

−1
d and vt = µ′RW (Rt − µR).

(c) When ρ2 = 0,

T ρ̂2 A∼
K∑
j=1

ξj
Q0

xj , (31)

where the xj’s are independent χ2
1 random variables and the ξj’s are the eigenvalues of

(Vf,RWVR,f )V (λ̂), (32)

where V (λ̂) is given in Proposition 1.

Proof. See Appendix.

2.3. Multiple sign restriction test

In this section, we develop and implement a formal test of multiple sign restrictions. This is a

multivariate inequality test based on results in the statistics literature due to Wolak (1987, 1989).

Suppose that interest lies in testing

H0 : Qλ ≥ 0p vs. H1 : λ ∈ <K , (33)

where Q is a p×K matrix of linear inequality restrictions with rank p (p ≤ K) and 0p is a (p× 1)-

vector of zeros. The Q matrix can be set up to incorporate restrictions that either come from some

a priori knowledge or from theory.

Given the normality result in Proposition 1, the test statistic is constructed by first solving the

quadratic programming problem

min
λ

(λ̂− λ)′Q′(QV̂ (λ̂)Q′)−1Q(λ̂− λ) s.t. Qλ ≥ 0p, (34)
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where V̂ (λ̂) is a consistent estimator of V (λ̂). Let λ̃ be the optimal solution of the problem in (34).

The likelihood ratio test of the null hypothesis is

LR = T (λ̂− λ̃)′Q′(QV̂ (λ̂)Q′)−1Q(λ̂− λ̃). (35)

For computational purposes, it is more convenient to consider the dual problem

min
ρ
ρ′Qλ̂+

1

2
ρ′(QV̂ (λ̂)Q′)ρ s.t. ρ ≥ 0p. (36)

Let ρ̃ be the optimal solution of the problem in (36). The Kuhn-Tucker test of the null hypothesis

is given by

KT = T ρ̃′(QV̂ (λ̂)Q′)ρ̃. (37)

The objective functions of the primal and dual problems evaluated at the optimum (λ̃, ρ̃) are

equal and we have that LR = KT .

To conduct statistical inference, we need to derive the asymptotic distribution of LR. Wolak

(1989) shows that under H0 : Qλ = 0p (that is, the least favorable value of Qλ under the null

hypothesis), LR has a weighted chi-squared distribution

LR
A∼

p∑
i=0

wi

(
(QV (λ̂)Q′)−1

)
Xi =

p∑
i=0

wp−i

(
QV (λ̂)Q′

)
Xi, (38)

where the Xi’s are independent χ2 random variables with i degrees of freedom, χ2
0 ≡ 0, and the

weights wi sum up to one. To compute the p-value of LR, we replace V (λ̂) with V̂ (λ̂) in the weight

functions.

3. Empirical analysis

In this section we evaluate whether several prominent multifactor models satisfy the sign restrictions

imposed by the ICAPM. To obtain an a priori knowledge of the expected signs of the λ parameters,

we first run multiple predictive time-series regressions of the changes in the investment opportunity

set (proxied by the future expected return on the aggregate equity market) on the model-specific

state variables. Next, we run cross-sectional regressions of average excess returns on the estimated

covariances between the excess returns and the innovations in these state variables (i.e., the factors).
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A multifactor model is said to satisfy the restrictions imposed by the ICAPM if the signs with which

the model’s state variables predict changes in the investment opportunity set coincide with the signs

of the prices of covariance risk that their innovations earn in the cross-section. In addition, since

the covariance price of market risk has a natural interpretation of relative risk aversion coefficient,

we incorporate in our set of sign restrictions the constraint that the market premium should be

positive.

In addition to the models considered in Maio and Santa-Clara (2012), we analyze the five-factor

specification proposed by Fama and French (2015). More specifically, we estimate and test nine

multifactor models. Four of these models are theory based and contain innovations in state variables

that have often been used in the return predictability literature. The rest are empirically motivated

models that have sometimes received an ICAPM interpretation in the asset-pricing literature.

The first of the theory motivated models is the specification of Hahn and Lee (2006), which

extends the CAPM by including innovations in a term state variable and a default state variable.

The multifactor model proposed by Petkova (2006) contains innovations in the dividend yield and

in the risk-free rate in addition to the factors in the Hahn and Lee (2006) model. We also test

an unrestricted version of the ICAPM specification of Campbell and Vuolteenaho (2004), which

incorporates innovations in a price-to-earnings state variable, a term state variable, and a value

spread state variable in addition to the market. The last theory motivated model is the multifactor

model proposed by Koijen, Lustig, and Van Nieuwerburgh (2017), which includes, in addition to

the market return, innovations in the term state variable and in the return-forecasting factor of

Cochrane and Piazzesi (2005).

As for the empirically motivated models, the first model we consider is the Fama and French

(1993) three-factor model, which extends the CAPM by including size and value in addition to the

market. The Carhart (1997) four-factor model extends the Fama and French (1993) three-factor

model by including a momentum factor. The Pastor and Stambaugh (2003) model extends the

Fama and French (1993) three-factor model by including a liquidity factor. We also consider the

five-factor model used by Fama and French (1993) to explain the expected returns on stocks and

bonds. Their augmented model includes a term and a default factor in addition to the market,

size, and value factors. Finally, we also estimate and test the five-factor model proposed by Fama

and French (1993) which incorporates a profitability and an investment factor in addition to the
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classical three factors, namely market, size and value.

3.1. Predictive regressions for ICAPM state variables

In this section, we examine whether and with what sign the candidates state variables forecast

changes in investment opportunities. The proxy for the investment opportunity set is the aggregate

equity market and changes in investment opportunities are proxied by the monthly return on the

value-weighted stock market index (from Kenneth French’s website). The sample period is from

July 1963 until December 2018. For each of the previously described models, we assess the joint

forecasting power of the state variables by running multiple predictive time-series OLS regressions

of the following form:

rt,t+q = aq + bqzt + ut,t+q, (39)

where rt,t+q = rt+1 + ..+ rt+q is the continuously compounded return over q periods, zt is the set

of candidate state variables corresponding to each model, and ut,t+q is a conditionally zero-mean

forecasting error. The forecasting horizons q we consider are one, twelve, and sixty months. Here,

our interest lies in the estimates of bq and their associated t-statistics. This is indicative of whether

a state variable forecasts positive or negative changes in future investment opportunities and of

whether this effect is statistically significant.

We start by describing the state variables that will be used in the theory-based models. The

predictive regressions for the Hahn and Lee (2006) model (HL) are given by

rt,t+q = aq + bqTERMt + cqDEFt + ut,t+q, (40)

where TERM is slope of the Treasury yield curve, computed as the difference between the yields

on ten-year and one-year Treasury bonds, and DEF is corporate bond default spread, computed as

the difference between the yields on BAA- and AAA-rated corporate bonds. The yield data used

for computing these factors are from the Federal Reserve Bank of St. Louis database (FRED).

For the Petkova (2006) model (P) we have

rt,t+q = aq + bqTERMt + cqDEFt + dqDYt + eqRFt + ut,t+q, (41)

where DY is the aggregate dividend-to-price ratio of the S&P Composite index, computed as the

log ratio of annual dividends to the price level of the index (from Robert Shiller’s website), and

RF is the one-month Treasury bill rate (from Kenneth French’s website).
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In case of the Campbell and Vuolteenaho (2004) model (CV) we have

rt,t+q = aq + bqTERMt + cqPEt + dqV St + ut,t+q, (42)

where PE is the aggregate price-to-earnings ratio of the S&P Composite index, computed as the

log ratio of the price level of the index to a ten-year moving average of earnings (cyclically adjusted

price-earnings) using data available on Robert Shiller’s website, and V S is the value spread of

Campbell and Vuolteenaho (2004), computed as the difference between the monthly log book-to-

market ratios of the small high-book-to-market portfolio and the small low-book-to-market portfolio

using data on the six portfolios sorted on size and book-to-market from Kenneth French’s website.

Finally, for the Koijen, Lustig, and Van Nieuwerburgh (2017) model (KLVN), we formulate the

predictive regression as

rt,t+q = aq + bqTERMt + cqCPt + ut,t+q, (43)

where CP is the Cochrane and Piazzesi (2005) factor, computed as the fitted value from a regression

of the average (across maturities) excess bond return on a linear combination of forward rates using

the Fama-Bliss data from CRSP.3

For the empirical specifications, the state variables are constructed as in Maio and Santa-Clara

(2012). Specifically, in the case of the Fama and French (1993) three-factor model (FF3), the

state variables corresponding to the size (SMB) and value (HML) factors are approximated using

monthly market-to-book data on the six portfolios sorted on size and book-to-market (BM) from

Kenneth French’s website:

SMB∗FF3 =
MBSL +MBSM +MBSH

3
− MBBL +MBBM +MBBH

3
, (44)

HML∗FF3 =
MBSH +MBBH

2
− MBSL +MBBL

2
, (45)

where MBSL, MBSM , MBSH , MBBL, MBBM , and MBBH are the monthly market-to-book

ratios of the small-low BM, small-medium BM, small-high BM, big-low BM, big-medium BM,

and big-high BM portfolios. This approximation allows us to interpret SMB∗FF3 and HML∗FF3

as the state variables and the factors themselves as innovations in these state variables, that is,

SMB ' ∆SMB∗FF3 and HML ' ∆HML∗FF3 (see Maio and Santa-Clara, 2012). Hence the

3For details on the construction of the CP factor see Cochrane and Piazzesi (2005).
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predictive regression for FF3 is

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + ut,t+q. (46)

For the Carhart (1997) model (C), we approximate the state variable associated with the mo-

mentum factor using cumulative sums of the factor returns over the previous 60 months:

CUMDt =
t∑

s=t−59

UMDs, (47)

where UMD is the momentum factor (from Kenneth French’s website). As pointed out by Maio and

Santa-Clara (2012) and Cooper and Maio (2018), we use the 60 months cumulative sum because the

total cumulative sum is close to being non-stationary and the momentum factors is approximated

by the first difference in this constructed state variable UMD ' ∆CUMD. Thus, the predictive

regression takes the form

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + dqCUMDt + ut,t+q. (48)

We adopt a similar approach for constructing the state variable associated with the liquidity

factor in the Pastor and Stambaugh (2003) model (PS):

CLt =
t∑

s=t−59

Ls, (49)

where L is the non-traded liquidity factor from Lubos Pastor’s website. The first difference in the

state variable closely approximates the original factor, that is, L ' ∆CL. The predictive regression

is formulated as

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + dqCLt + ut,t+q. (50)

The predictive regression for the Fama and French (1993) five-factor model (FFTD) that incor-

porates the bond-market factors TERM and DEF is given by

rt,t+q = aq + bqSMB∗FF3,t + cqHML∗FF3,t + dqTERMt + eqDEFt + ut,t+q, (51)

where SMB∗FF3 and HML∗FF3 are the state variables defined in (44) and (45), respectively.

The state variables corresponding to the Fama and French (2015) five-factor model (FF5) are

constructed using a similar approach to the one used for obtaining the FF3 state variables, except
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that we now use market-to-book data on three sets of portfolios instead of just one, namely the

six portfolios sorted on size and book-to-market, the six portfolios sorted on size and operating

profitability, as well as the six portfolios sorted on size and investment (from Kenneth French’s

website). More specifically, the state variables corresponding to the size (SMB), value (HML),

profitability (RMW ), and investment (CMA) factors are obtained by combining monthly market-

to-book ratios across the relevant portfolios as follows:

SMB∗FF5 =
SMBB/M + SMBOP + SMBINV

3
, (52)

SMBB/M =
MBSL +MBSM +MBSH

3
− MBBL +MBBM +MBBH

3
, (53)

SMBOP =
MBSW +MBSM +MBSR

3
− MBBW +MBBM +MBBR

3
, (54)

SMBINV =
MBSC +MBSM +MBSA

3
− MBBC +MBBM +MBBA

3
, (55)

HML∗FF5 =
MBSH +MBBH

2
− MBSL +MBBL

2
, (56)

RMW ∗FF5 =
MBSR +MBBR

2
− MBSW +MBBW

2
, (57)

CMA∗FF5 =
MBSC +MBBC

2
− MBSA +MBBA

2
, (58)

where MBSW , MBSM , MBSR, MBBW , MBBM , and MBBR are the monthly market-to-book

ratios of the small-weak profitability, small-medium profitability, small-robust profitability, big-

weak profitability, big-medium profitability, and big-robust profitability portfolios, and MBSC ,

MBSM , MBSA, MBBC , MBBM , and MBBA are the monthly market-to-book ratios of the small-

conservative investment, small-medium investment, small-aggressive investment, big-conservative

investment, big-medium investment, and big-aggressive investment portfolios. As before, this ap-

proximation enables us to interpret the original factors as innovations in the state variables, that

is, SMB ' ∆SMB∗FF5, HML ' ∆HML∗FF5, RMW ' ∆RMW ∗FF5, and CMA ' ∆CMA∗FF5.

Therefore, the predictive regression for the FF5 model is

rt,t+q = aq + bqSMB∗FF5,t + cqHML∗FF5,t + dqRMW ∗FF5,t + eqCMA∗FF5,t + ut,t+q. (59)

In Table I we present estimation results for the multiple predictive regressions at horizons q of

one, twelve, and sixty months. We report slope parameter estimates and associated t-ratios com-

puted using Newey and West (1987) standard errors with q lags to correct for the serial correlation

in the residuals induced by the overlapping cumulative returns.
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In Panels A, B, C of Table I.1, we report the estimation results from the multiple predictive

regressions corresponding to the theoretical models that have been explicitly proposed as ICAPM

applications, at horizons of one, twelve, and sixty months, respectively. Several observations are in

order. First, there seems to be stronger evidence of return predictability at longer horizons. For the

one-month ahead predictive regressions (Panel A), only two out of eleven estimates are statistically

significant at the 5% level, while for the sixty-month ahead predictive regressions five estimates are

statistically significant at the 5% level (Panel C). The exceptions are the estimated coefficients on

the TERM state variable in the HL and KLVN models, on the DEF and RF state variables in

the P model, on the V S state variable in the CV model, and the CP state variable in the KLVN

model.

Second, the state variables do not predict future returns with the same signs across the different

horizons considered. For instance, the RF state variable in the P model negatively affects future

market returns in the one-month and twelve-month ahead predictive regressions (Panels A and

B) but positively affects future market returns in the sixty-months ahead predictive regression

(Panel C). However, these estimates are not statistically significant. Similarly, the V S state variable

in the CV model has a negative and statistically significant estimated slope coefficient at the one-

month horizon (Panel A), but this estimate becomes positive and statistically insignificant at the

sixty-month horizon (Panel C).

In Panels A, B, and C of Table I.2, we report predictive regressions for the empirical specifi-

cations at horizons of one, twelve, and sixty months, respectively. The pattern of stronger return

predictability at longer horizons seems to persist. At the one-month horizon (Panel A), none of the

estimates is statistically significant at the 5% level. In contrast, at the sixty-month horizon (Panel

C), the return predictability hypothesis receives support in seven out of sixteen instances at the

5% level.

Furthermore, we can observe the same issue of changing signs across predictive horizons. For

example, the CUMD state variable in the C model has a negative estimate in the one-month and

twelve-month ahead predictive regressions (Panels A and B), but the slope estimate associated with

it becomes positive in the sixty-month ahead predictive regression (Panel C). The CMA∗FF5 state

variable behaves similarly. These estimates are not statistically significant at the 5% level though.

These results raise a number of questions. On the one hand, it is unclear what is the appropriate
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horizon over which the ability of the state variables to forecast future investment opportunities

should be assessed. The horizon choice is somewhat arbitrary from an economic perspective, but

from a statistical perspective the choice will naturally be driven by the availability of evidence in

support of the predictability hypothesis. In our analysis of sign restrictions, we will rely on the

sixty-month horizon, for which there is the strongest evidence of return predictability.

On the other hand, it is not entirely clear how to proceed when an estimate in the predictive re-

gression is statistically insignificant, especially in light of the somewhat limited evidence in support

of the predictability hypothesis discussed above. Since a statistically insignificant slope estimate is

consistent with the true coefficient being either positive or negative, we believe that we should not

impose a sign restriction on the corresponding price of covariance risk in this case. Surprisingly,

previous studies have failed to take this aspect into account when evaluating the sign consistency

of the considered models. Tests of sign consistency merely relied on an eye-balling exercise whereby

the researcher simply compared the signs of the estimates in the time-series regressions with the

signs of the estimates in the cross-sectional regressions, regardless of precision. As we will see later

on, making inferences in the absence of statistical significance can strongly affect one’s conclusions

on the consistency of a multifactor model with the restrictions imposed by the ICAPM.

3.2. Multifactor models

In this section we examine the performance of several multifactor models in cross-sectional tests of

asset-pricing models. Our main interest is in assessing whether and with what signs the innovations

in the state variables are priced in the cross-section of equity returns. For each of the multifactor

models considered, we estimate the prices of covariance risk by running two-pass cross-sectional

regressions of average excess returns on the estimated factor covariances. The cross-sectional spec-

ification for a generic multifactor model is

µR = VR,fλf , (60)

where µR are the expected excess returns on the test assets, VR,f are the covariances between the

excess returns on the test assets and the innovations in the state variables, and λf are the prices

of covariance risk.

The test assets returns used in the analysis are the monthly value-weighted returns on the 25
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Fama-French size and book-to-market ranked portfolios, as well as the 25 Fama-French size and

momentum ranked portfolios (from Kenneth French’s website). The sample period runs from July

1963 until December 2018 (666 monthly observations). Following Maio and Santa-Clara (2012), we

use first differences as proxies for the innovations in the state variables and use the notation ∆ to

indicate these first differences or changes.

In each of the nine models considered, the first factor is the excess market return (rm), which is

proxied by the monthly return on the value-weighted stock market index in excess of the one-month

Treasury bill rate (from Kenneth French’s website). Hence, in the case of the Hahn and Lee (2006)

model (HL), the cross-sectional specification is

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆defλ∆def , (61)

where ∆term denotes the change in the slope of the Treasury yield curve and ∆def denotes the

change in the corporate bond default spread.

For the ICAPM proposed by Petkova (2006) (P) we have

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆defλ∆def + +VR,∆dyλ∆dy + VR,∆rfλ∆rf , (62)

where ∆dy denotes changes in the aggregate dividend-to-price ratio and ∆rf denotes changes in

the one-month Treasury bill rate.

The Campbell and Vuolteenaho (2004) model (CV) takes the form

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆peλ∆pe + VR,∆vsλ∆vs, (63)

where ∆pe denotes changes in the aggregate price-to-earnings ratio and ∆vs denotes changes in

the value spread of Campbell and Vuolteenaho (2004).

The Koijen, Lustig, and Van Nieuwerburgh (2017) model (KLVN) is

µR = VR,rmλrm + VR,∆termλ∆term + VR,∆cpλ∆cp, (64)

where ∆cp denotes changes in the return-forecasting factor of Cochrane and Piazzesi (2005).

In the case of the Fama and French (1993) three-factor model (FF3) we have

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml, (65)
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where smb is the return difference between portfolios of stocks with small and big market capitaliza-

tions, and hml is the return difference between portfolios of stocks with high and low book-to-market

ratios (from Kenneth French’s website).

The cross-sectional specification for the Carhart (1997) four-factor model (C) is

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,umdλumd, (66)

where umd is return difference between portfolios of stocks with high and low prior returns (from

Kenneth French’s website).

For the Pastor and Stambaugh (2003) model (PS), we have

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,lλl, (67)

where l is the non-traded liquidity factor (from Lubos Pastor’s website).

The Fama and French (1993) three-factor model augmented with the bond-market factors, the

term spread and corporate default spread, (FFTD) is

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,∆termλ∆term + VR,∆defλ∆def . (68)

Finally, the Fama and French (2015) five-factor model (FF5) is

µR = VR,rmλrm + VR,smbλsmb + VR,hmlλhml + VR,rmwλrmw + VR,cmaλcma, (69)

where rmw is the return difference between portfolios of stocks with robust and weak operating

profitability, and cma is the return difference between portfolios of stocks with conservative and

aggressive investment (from Kenneth French’s website).

3.2.1. Sample cross-sectional R2s of the models

In Table II, we report the sample cross-sectional R2 (ρ̂2) for each model and investigate whether

the model does a good job of explaining the cross-section of expected returns. We denote the

p-value of a specification test of H0 : ρ2 = 1 by p(ρ2 = 1), and the p-value of a test of H0 : ρ2 = 0

by p(ρ2 = 0). Both tests are based on the asymptotic results in Section 2 for the sample cross-

sectional R2 statistic. We also provide an approximate F -test of model specification for comparison,
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denoted Q̂c. Next, we report the asymptotic standard error of the sample R2, se(ρ̂2), computed

under the assumption of a misspecified model that provides some explanatory power i.e. 0 < ρ2 < 1.

Finally, No. of para. is the number of parameters in each asset-pricing model.

The F -test is a generalized version of the cross-sectional regression test (CSRT) of Shanken (1985).

It is based on a quadratic form in the model’s deviations, Q̂c = ê′V̂ (ê)+ê, where V̂ (ê) is a consis-

tent estimator of the asymptotic variance of the sample pricing errors and V̂ (ê)+ its pseudo-inverse.

When the model is correctly specified (that is, e = 0N or ρ2 = 1), we have TQ̂c
A∼ χ2

N−K−1. Fol-

lowing Shanken (1985), the reported p-value, p(Qc = 0), is for a transformation of Q̂c that has an

approximate F distribution: Q̂c
app.∼

(
N−K−1
T−N+1

)
FN−K−1,T−N+1.

In Panels A, B, and C of Table II.1, we provide results for the OLS, GLS, and WLS CSRs,

respectively, for the case when the 25 size and book-to-market sorted portfolios are used as test

assets. When estimation is done using OLS (Panel A), four models out of nine, namely FF3, PS,

FFTD, and FF5, are rejected by the R2 test, while the F -test indicates rejection of all but the HL

and P models at the 5% level. The same four models are also rejected by the R2 test when using

WLS (Panel C) and the same significance level, while in this case the F -test rejects all but the P

model. However, when estimation is made using GLS (Panel B), all the models except the P model

are rejected at the 5% significance level by both the R2 and the F -test. The null hypothesis that

the model does not explain any of the variation in expected returns, (H0 : ρ2 = 0), is rejected at

the 5% level for all the models and under all estimation methods.

Table II.2 is for the 25 size and momentum sorted portfolios. Based on the OLS R2 (Panel A),

four out of nine models, namely HL, CV, FF3 and C, are rejected at the 5% level, while the F -test

indicates rejection of the same four models except the CV model. Using WLS (Panel C), all but

the P, KLVN and FF5 models are rejected by the R2 test, while the WLS F -test rejects four out

of the nine models at the 5% level, namely the HL, CV, FF3 and C models. As for the test of

H0 : ρ2 = 0, the null of no explanatory power is strongly rejected at the 1% level for all the models

both in the OLS case (Panel A) and the WLS case (Panel C). When estimation is done using GLS

(Panel B), the null hypothesis that the model is correctly specified (H0 : ρ2 = 1) is rejected at the

5% level for all the models by both the R2 test and the F -test. Additionally, the hypothesis of no

explanatory power H0 : ρ2 = 0 cannot be rejected at the 5% level in three instances, and indicates

that this choice of test assets is particularly challenging for the HL, CV and KLVN models.
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Although the results are sensitive to the criterion minimized in estimation as well as to the set

of test assets used, there is widespread evidence of model misspecification. These are situations

in which the use of misspecification-robust standard errors is likely to affect the outcomes of the

parameter and multivariate inequality tests.

3.2.2. Properties of the λ estimates under correctly specified and potentially mis-
specified models

In this section, we follow what has been done in the literature and compare the signs of the time-

series estimates with the signs of the cross-sectional estimates. In addition, we require the market

price of covariance risk to be positive. We draw conclusions on sign consistency regardless of the

statistical significance of the estimates.

In Table III, we report estimates of the price of covariance risk λ̂ and associated t-ratios under

correctly specified and potentially misspecified models. For correctly specified models, we give the

t-ratio of Fama and MacBeth (1973), followed by that of Shanken (1992) and Jagannathan and

Wang (1998), which account for estimation error in the covariances. Last, we report the t-ratio

under potentially misspecified models, based on the results presented in Section 2. The various

t-ratios are identified by subscripts fm, s, jw, and pm, respectively. Additionally, we also report

the signs with which the underlying state variables predict future returns in the multiple time-series

regressions (as a superscript in λ̂, that is, λ̂(±)).

In Panels A, B, and C of Table III.1, we provide results for the OLS, GLS, and WLS CSRs,

respectively, for the case when the 25 size and book-to-market sorted portfolios are used as test

assets. When estimation is done using OLS (Table III.1, Panel A), only three models, namely

FF3, C and FFTD, appear to be consistent with an ICAPM interpretation. However, none of

the estimates with an inconsistent sign is statistically significant at the 5% level, except for the

profitability (rmw) factor in the FF5 model. The estimate on the risk-free (rf) factor in the P

model is also sign-inconsistent and statistically significant when Fama and and MacBeth (1973)

standard errors are used in the estimation, but becomes insignificant when using EIV-corrected

and misspecification-robust standard errors.

For GLS (Table III.1, Panel B), six out of nine models appear to be consistent with an ICAPM

interpretation. Only three models, namely P, CV and FF5, have estimated prices of covariance risk
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whose signs are inconsistent with the signs of the estimated slopes from the predictive regressions.

As for the statistical significance of the estimates with an inconsistent sign, most of them are not

statistically significant after accounting for the estimation error in the covariances and for potential

model misspecification. For instance, in case of the estimates on the market (rm) and dividend-yield

(dy) factors in the P model, the Fama and MacBeth (1973) t-ratios indicate statistical significance

at the 5% level but this is no longer the case if one considers the Shanken (1992), Jagannathan

and Wang (1998) and misspecification-robust t-ratios. The only factor whose price of covariance

risk is significant, as indicated by the set of all t-ratios, is the profitability (rmw) factor in the FF5

model.

The results for the WLS case (Table III.1, Panel C) indicate that the same six models, namely

HL, KLVN, FF3, C, PS, and FFTD are consistent with the sign restrictions imposed by the ICAPM.

Out of the models with price of covariance risk estimates whose signs do not coincide with the signs

of the time-series estimates, only the FF5 model contains a coefficient that remains statistically

significant at the 5% level using all sets of standard errors.

Table III.2 presents results for the 25 size and momentum sorted portfolios. In the OLS case

(Table III.2, Panel A), only the C model appears to be consistent with an ICAPM interpretation as

the signs of its price of covariance risk estimates coincide with the signs of the time-series estimates

and it also satisfies the requirement that the market price of covariance risk is positive. The P,

FF3 and PS models contain estimates with inconsistent signs that become insignificant when using

EIV-corrected and misspecification-robust standard errors. On the other hand, the HL, CV, KLVN,

FFTD and FF5 models contain estimates with an inconsistent sign that are statistically significant

even after accounting for potential model misspecification.

For GLS (Table III.2, Panel B), six of the nine models have estimates that are not consistent

with an ICAPM interpretation. The models that satisfy the ICAPM sign requirements are FF3,

C, and PS. However, most of the coefficient estimates with an inconsistent sign are not statistically

significant at the 5% level. Only the P and FF5 models contain a statistically significant estimate

with an inconsistent sign as indicated by the set of all four t-ratios.

When WLS is used (Table III.2, Panel C), only the C model appears to satisfy the sign restric-

tions of the ICAPM. The HL, P, and PS models contain estimates for which the sign consistency is

violated and which are statistically significant when using standard errors under correctly specified
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models but insignificant when using misspecification-robust standard errors. On the other hand,

the CV, KLVN, FFTD, and FF5 models contain sign inconsistent estimates that are statistically

significant even after controlling for model misspecification.

To summarize, if we simply compare the signs of the cross-sectional estimates with the signs

of the time-series estimates and we require the market price of covariance risk to be positive, then

the sign restrictions imposed by the ICAPM are satisfied in only 20 out of 54 cases. However, it

should be noted that most cross-sectional estimates with an inconsistent sign are not statistically

significant. In addition, accounting for model misspecification often makes a qualitative difference

in terms of the conclusions reached.

3.2.3. Test of multiple sign restrictions

In this section, we employ the test of multiple sign restrictions discussed in Section 2.3 to assess

whether the various models satisfy the time-series and cross-sectional restrictions imposed by the

ICAPM. The use of this test will lead us to conclusions that are substantially different from the

ones based on the comparative analysis of the previous section. The reason, in a nutshell, is

that the test of multiple sign restrictions accounts for the estimation error in the parameters, for

the joint significance of the estimates, and for potential model misspecification. Specifically, a

coefficient estimate that is not statistically significant is consistent with the true coefficient being

either positive or negative. This has two implications in the current setting. On the one hand, it

is not clear whether a statistically insignificant cross-sectional estimate is consistent with the sign

restriction obtained from the time series. On the other hand, and perhaps more importantly, it is

not clear what sign restriction should be tested, if any, when the time-series estimate is statistically

insignificant. In the following analysis, we will explore two cases: (i) when our a priori knowledge

is simply based on the signs of the time-series estimates, regardless of their statistical significance,

and (ii) when our a priori knowledge is only based on the signs of the time-series estimates that

are statistically significant.

3.2.3.1 Imposing sign restrictions on all λ’s

For a K-factor model, the test of multiple sign restrictions is a test of the null hypothesis

H0 : Qλ ≥ 0K versus the alternative H1 : λ ∈ <K , where Q is a K ×K matrix of constraints with

rank K. Specifically, when testing whether the coefficient associated with the kth factor is positive

25



(negative), we set the (k, k)-element of the Q matrix equal to one (minus one), while the other

elements in the kth row of Q are set equal to zero.

In Table IV, we report the values of the test statistic, LR, and associated p-values under correctly

specified and potentially misspecified models. The specific form of V (λ̂) in LR depends on whether

the Fama and MacBeth (1973), Shanken (1992), Jagannathan and Wang (1998), or misspecification-

robust asymptotic variances of the λ̂’s are used (see Section 2). The corresponding likelihood ratio

tests and their p-values are identified by the subscripts fm, s, jw, and pm, respectively.

In Panels A, B, and C of Table IV.1, we present results for the OLS, GLS, and WLS tests of

multiple sign restrictions, respectively, for the case when the 25 size and book-to-market sorted

portfolios are used as test assets. Under all estimation methods, FF5 is the only model for which

the set of sign restrictions is systematically rejected at the 5% level by all four test statistics.

For the other eight models, we are unable to reject the null hypothesis that the sign restrictions

imposed by the ICAPM hold. These results are consistent with the analysis of the estimates of

the prices of covariance risk in Table III.1. Out of all the estimates with an inconsistent sign,

only the estimate associated with the profitability (rmw) factor in FF5 was statistically significant.

Statistical precision of the λ estimates is clearly the key driver of the power of the test of sign

restrictions.

It is worth noting that conducting inference under potential model misspecification often leads

to qualitatively different conclusions. In general, the amount of evidence against the null hypothesis

decreases when using misspecification-robust standard errors and we observe an increase in p-values.

This closely matches the pattern of statistical significance of the λ estimates in the cross-sectional

analysis of Table III.1. For instance, OLS and GLS test results (Table IV.1, Panels A and B,

respectively) for the P model indicate that the sets of sign restrictions is rejected when the test

statistics are based on the Fama and MacBeth (1973) standard errors, but not when inference is

robustified against potential model misspecification. This is consistent with the pattern observed

in Panels A and B of Table III.1, showing that the P model contains estimates with inconsistent

signs that are statistically significant when using Fama and MacBeth (1973) standard errors but

insignificant when using misspecification robust standard errors.

In Panels A, B, and C of Table IV.2, we employ the 25 size and momentum sorted portfolios

as test assets. Only the FF5 model is systematically rejected under all estimation methods and
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by all test statistics at the 5% level. Additionally, in the OLS case (Table IV.2, Panel A) the

consistency of the HL and CV models with the ICAPM implications is also rejected at the 5%

level when misspecification-robust standard errors are used in the estimation. Interestingly, the

misspecification-robust test statistic cannot reject the hypothesis of sign consistency in case of the

KLVN and FFTD models despite the fact that these models contained a statistically significant

estimate with an inconsistent sign as shown in Panel A of Table III.2. This is due to the fact

that we are employing a test of joint restrictions across multiple factors; given that the other

coefficient estimates in these models have the predicted sign and are statistically significant the

evidence against the null is weakened. Similarly, when using GLS (Table IV.2, Panel B) and

misspecification-robust standard errors the P model barely misses rejection with a p-valuepm of

7%, which reflects the feature of imposing joint sign restrictions across multiple factors.

For WLS (Table IV.2, Panel C), the set of all four test statistics indicates that only the FF3

and C models satisfy the ICAPM restrictions, while the CV, KLVN, FFTD, and FF5 models do

not satisfy the restrictions when considering a 5% confidence level. In line with the patterns of

diminishing statistical significance shown in Panel A of Table III.3 the test indicates rejection of the

HL, P and PS models when Fama and MacBeth (1973) standard errors are used in the estimation

but this is no longer the case once misspecification-robust errors are employed.

Several observations emerge from the analysis. First, in 43 out of 54 cases, there is not enough

evidence against the null of consistency with the ICAPM when using a 5% significance level and

misspecification-robust standard errors.4 Second, accounting for model misspecification can make

a significant difference in terms of conclusions: when the test is implemented using the Fama and

MacBeth (1973) standard errors then we observe 32 out of 54 instances in which there is not

enough evidence to reject the null of sign consistency. Third, the amount of evidence against the

null is driven by the statistical significance of the cross-sectional estimates. Finally, the statistical

significance of the individual cross-sectional estimates is only indicative of the test results since the

null hypothesis being tested is composite.

4We also explore the impact of autocorrelation on our results by using the automatic lag length selection procedure
of Newey and West (1994) and reach similar conclusions. Specifically, failure to reject the null is now observed in 47
out of 54 cases, and the models that exhibit inconsistencies with the ICAPM at the 5% level using misspecification-
robust estimation are the FF5 model for OLS and GLS using the 25 size and book-to-market sorted portfolios, the P
model for OLS and GLS, the KLVN model for OLS and WLS, and the FFTD model for OLS using the 25 size and
momentum sorted portfolios.
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3.2.3.2 Imposing sign restrictions conditional on the state variables being robust predictors

As previously mentioned, it is not clear whether and what sign restrictions should be imposed

when the time-series estimates are not statistically significant. The results presented in Table IV

relate to the case in which the restrictions imposed are purely based on the signs of the time-

series estimates, regardless of their statistical significance. We now explore the case in which sign

restrictions are imposed conditional on the state variables being robust predictors. Specifically, if

the state variable corresponding to the kth factor in a K-factor model is not a robust predictor

of future aggregate returns, we eliminate the corresponding row from the matrix of constraints Q.

Thus, the test of multiple sign restrictions is a test of the null hypothesis H0 : Qλ ≥ 0p versus the

alternative H1 : λ ∈ <K , where Q is the p×K matrix of constraints and p ≤ K is the number of

restrictions being imposed.

In Table V, we report results by imposing sign restrictions only on the factors whose associated

state variables have estimated time-series coefficients that are statistically significant at the 5%

level, as shown in Panel C of Tables I.1 and I.2. More specifically, we maintain the sign restriction

associated with the term factor in the P, CV and FFTD models, the def factor in the HL model,

the dy factor in the P model, the pe factor in the CV model, the smb factor in the C model, the hml

factor in the FF3, C, PS and FFTD models, and the rmw factor in the FF5 model. Additionally,

we maintain the restriction that the market price of covariance risk is positive across all the models.

In Panels A, B, and C of Table V.1, we provide results for the OLS, GLS, and WLS tests

of multiple sign restrictions, respectively, for the case when the 25 size and book-to-market sorted

portfolios are used as test assets. The results are qualitatively similar to the baseline case presented

in Table V.1. The only model that is systematically rejected across estimation methods and by

the set of all four test statistics is the FF5 model. This accurately reflects the fact that for this

model we kept the sign restriction on the price of covariance risk estimate associated with the

profitability (rmw) factor, which as shown in Table III.1 was statistically significant and had an

inconsistent sign. Generally, we observe a decrease in p-values relative to the baseline case when

removing a restriction from coefficient estimates with a consistent sign (which is the case for the

HL, CV, KLVN, FF3, C, PS, and FFTD models). However, when a restrictions is removed from

a coefficient estimate with an inconsistent sign (which is the case for the P model) we observe an

increase in p-values since the amount of evidence against the null of sign consistency decreases.
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Table V.2 presents results for the 25 size and momentum sorted portfolios. Worth noting is

the fact that the FF5 model is no longer systematically rejected, and we only observe rejection of

the null when estimation is done using GLS (Table V.2, Panel B). Otherwise, the evidence against

the null follows closely the pattern of statistical significance of the restricted sign cross-sectional

coefficient, rmw, shown in Table III.2. Other notable differences relative to the baseline case are

the HL model for OLS estimation, and the KLVN model for WLS estimation, both of which are

now consistent with an ICAPM interpretation. Comparing Panel A of Table V.2 with Panel A of

Table IV.2, we note that the HL now satisfies the ICAPM restrictions (p-valuepm of 39% versus

p-valuepm of 4% in the baseline case). This is due to the removal of the sign restriction on the

term factor which, as shown in Panel A of Table III.2, has a statistically significant cross-sectional

estimate with an inconsistent sign. Similarly, the WLS p-valuepm associated with the KLVN model

increases beyond the point of rejecting the null (from 5% in the baseline case to 50%), which is due

to the removal of the constraint on the term factor, whose estimate was marginally significant and

had an inconsistent sign (Table III.2, Panel C).

Overall, we find that reducing the number of restrictions imposed on the model coefficients

reduces the evidence against the null hypothesis of sign consistency relative to the baseline case

whereby restrictions are imposed on all coefficients. The null hypothesis of consistency with an

ICAPM interpretation is rejected in only 7 out of 54 cases when using a 5% significance level and

misspecification-robust standard errors.5

Finally, we explore an alternative way of setting up the matrix of constraints, Q, when the

time-series estimates are statistically insignificant. We implement the new set of restrictions by

setting equal to zero the price of covariance risk corresponding to a state variable that is not a

robust predictor of future equity returns. Specifically, instead of eliminating the corresponding row

from the matrix of constraints, we set each element in that row equal to zero. Table VI presents

our results. The null of consistency with the ICAPM is rejected in only 1 of the 54 cases at the

5% level using misspecification-robust standard errors (namely the FFTD model when using WLS

estimation and size and momentum sorted portfolios).6

5With a Newey and West (1994) automatic lag length selection adjustment, only in 3 out of 54 cases the
misspecification-robust test statistics reject the null hypothesis of consistency with the ICAPM at the 5% level.
Specifically, when using the size and momentum sorted portfolios as test assets the CV model for OLS estimation
and the FFTD model for OLS and WLS estimation exhibit inconsistency with the ICAPM.

6When using a Newey and West (1994) automatic lag length selection adjustment all models are found to be
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4. Conclusion

We develop a multivariate inequality framework for testing the consistency of multifactor asset-

pricing models with the time-series and cross-sectional restrictions imposed by the ICAPM. Our

test is based on results in the statistics literature due to Wolak (1987, 1989) and represents one of

the first applications of Wolak’s methods in empirical finance, alongside the ones in Kan, Robotti,

and Shanken (2013) and Gospodinov, Kan, and Robotti (2013).

We apply our test to nine multifactor models using two different sets of portfolios as test

assets and three alternative estimation schemes. We find little evidence of inconsistency of popular

multifactor models with the restrictions imposed by the ICAPM. Our findings are at odds with the

results in Maio and Santa-Clara (2012) who argue that most models do not satisfy the restrictions

imposed by the ICAPM, but are in line with Boons (2016) and Barroso, Boons and Karehnke (2019)

who use individual stock level evidence to show that most multifactor models are consistent with

an ICAPM interpretation. Interestingly, using our testing framework, we are able to show that

most multifactor models are consistent with the ICAPM restrictions even when portfolios instead

of individual stocks are used in analysis.

In the extant literature the consistency of the models with the ICAPM restrictions is assessed by

eye-balling the signs of the parameter estimates in the time-series and cross-sectional regressions.

We go beyond this practice and propose a multivariate inequality test to assess the consistency

of several multifactor models with the implications of the ICAPM. Specifically, our methodology

accounts for the estimation error in the covariances and for the fact that the consistency of a

multifactor model with the implications of the ICAPM should be evaluated using tests of joint

sign restrictions across factors. We also take seriously the fact that asset-pricing models are only

approximations to reality and are likely to be misspecified. Consistent with this view, we employ

inference methods that are robust to model misspecification, in addition to the traditional methods

that assume that the underlying model is correctly specified.

consistent with an ICAPM interpretation.
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Appendix

Proof of Proposition 1: The proof relies on the fact that λ̂ is a smooth function of µ̂ and V̂ .

Therefore, once we have the asymptotic distribution of µ̂ and V̂ , we can use the delta method to

obtain the asymptotic distribution of λ̂. Let

ϕ =

[
µ

vec(V )

]
, ϕ̂ =

[
µ̂

vec(V̂ )

]
. (A.1)

We first note that µ̂ and V̂ can be written as the generalized method of moments (GMM) estimator

that uses the moment conditions E[rt] = 0(N+K)(N+K+1), where

rt =

[
Yt − µ

vec((Yt − µ)(Yt − µ)′ − V )

]
. (A.2)

Since this is an exactly identified system of moment conditions, it is straightforward to verify that

under the assumption that Yt is stationary and ergodic with finite fourth moment, we have7

√
T (ϕ̂− ϕ)

A∼ N(0(N+K)(N+K+1), S0), (A.3)

where

S0 =

∞∑
j=−∞

E[rtr
′
t+j ]. (A.4)

Using the delta method, the asymptotic distribution of λ̂ under potentially misspecified models is

given by

√
T (λ̂− λ)

A∼ N

(
0K ,

[
∂λ

∂ϕ′

]
S0

[
∂λ

∂ϕ′

]′)
. (A.5)

Define Km,n as a commutation matrix (see, for example, Magnus and Neudecker (1999)) such that

Km,nvec(A) = vec(A′) where A is an m× n matrix. In addition, we denote Kn,n by Kn. Let Θ be

an N2 ×N2 matrix such that vec(Σd) = Θvec(Σ).8

(a) The partial derivatives of λ with respect to µ are given by

∂λ

∂µ′f
= 0K×K , (A.6)

∂λ

∂µ′R
= A. (A.7)

7Note that S0 is a singular matrix as V̂ is symmetric, so there are redundant elements in ϕ̂. We could have written
ϕ̂ as [µ̂′, vech(V̂ )′]′, but the results are the same under both specifications.

8Specifically, Θ is a matrix with (i, i)-th element equal to one, where i = 1, 1 + 1(N + 1), 1 + 2(N + 1), . . . , 1 +
(N − 1)(N + 1), and zeros elsewhere.
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It is easy to obtain:
∂vec(VR,f )

∂vec(V )′
= [IK , 0K×N ]⊗ [0N×K , IN ]. (A.8)

For the derivative of λ = AµR with respect to vec(V ), we use the product rule to obtain

∂λ

∂vec(V )′
= (µ′RWVR,f ⊗ IK)

∂vec(H)

∂vec(V )′
+ (µ′RW ⊗H)

∂vec(Vf,R)

∂vec(V )′
. (A.9)

The second term is given by

(µ′RW ⊗H)
∂vec(Vf,R)

∂vec(V )′
= [H, 0K×N ]⊗ [0′K , µ

′
RW ]. (A.10)

For the first term, we use the chain rule to obtain

(µ′RWVR,f ⊗ IK)
∂vec(H)

∂vec(V )′

= (µ′RWVR,f ⊗ IK)
∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RWVR,f ⊗ IK)(H ⊗H)

[
(Vf,RW ⊗ IK)

∂vec(Vf,R)

∂vec(V )′
+ (IK ⊗ Vf,RW )

∂vec(VR,f )

∂vec(V )′

]
= −(λ′ ⊗H) {([0K×K , Vf,RW ]⊗ [IK , 0K×N ])KN+K + [IK , 0K×N ]⊗ [0K×K , Vf,RW ]}

= [H, 0K×N ]⊗ [0′K , −λ′Vf,RW ] + [−λ′, 0′N ]⊗ [0K×K , A]. (A.11)

Combining the two terms, we have

∂λ

∂vec(V )′
= [H, 0K×N ]⊗

[
0′K , e

′W
]
−
[
λ′, 0′N

]
⊗ [0K×K , A] . (A.12)

Using the expression of ∂λ/∂ϕ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =

∞∑
j=−∞

E[ht(ϕ)ht+j(ϕ)′], (A.13)

where

ht(ϕ) =
∂λ

∂ϕ′
rt(ϕ)

= A(Rt − µR) + vec

(
[0′K , e

′W ][(Yt − µ)(Yt − µ)′ − V ]

[
H

0N×K

])

− vec

(
[0K×K , A][(Yt − µ)(Yt − µ)′ − V ]

[
λ

0N

])
= (λt − λ) +H(ft − µf )ut −A(Rt − µR)(ft − µf )′λ+AVR,fλ

= (λt − λ) +AGtλ+H(ft − µf )ut. (A.14)

This completes the proof of part (a).
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(b) The partial derivatives of λ with respect to µ are the same as in the fixed weighting matrix

case. For the derivative of λ with respect to vec(V ), we use the product rule to obtain

∂λ

∂vec(V )′
= (µ′RV

−1
R VR,f⊗IK)

∂vec(H)

∂vec(V )′
+(µ′RV

−1
R ⊗H)

∂vec(Vf,R)

∂vec(V )′
+(µ′R⊗HVf,R)

∂vec(V −1
R )

∂vec(V )′
.

(A.15)

The last two terms are given by

(µ′RV
−1
R ⊗H)

∂vec(Vf,R)

∂vec(V )′
= [H, 0K×N ]⊗ [0′K , µ

′
RV
−1
R ], (A.16)

(µ′R ⊗HVf,R)
∂vec(V −1

R )

∂vec(V )′
= −[0′K , µ

′
RV
−1
R ]⊗ [0K×K , A]. (A.17)

For the first term, we use the chain rule to obtain

(µ′RV
−1
R VR,f ⊗ IK)

∂vec(H)

∂vec(V )′

= (µ′RV
−1
R VR,f ⊗ IK)

∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RV
−1
R VR,f ⊗ IK)(H ⊗H)

[
(Vf,RV

−1
R ⊗ IK)

∂vec(Vf,R)

∂vec(V )′

+ (Vf,R ⊗ Vf,R)
∂vec(V −1

R )

∂vec(V )′
+ (IK ⊗ Vf,RV −1

R )
∂vec(VR,f )

∂vec(V )′

]
= −(λ′ ⊗H)

{(
[0K×K , Vf,RV

−1
R ]⊗ [IK , 0K×N ]

)
KN+K

− [0K×K , Vf,RV
−1
R ]⊗ [0K×K , Vf,RV

−1
R ]

+ [IK , 0K×N ]⊗ [0K×K , Vf,RV
−1
R ]
}

= [H, 0K×N ]⊗ [0′K , −λ′Vf,RV −1
R ]

+ [−λ′, λ′Vf,RV −1
R ]⊗ [0K×K , A]. (A.18)

Combining the three terms, we have

∂λ

∂vec(V )′
= [H, 0K×N ]⊗

[
0′K , e

′V −1
R

]
−
[
λ′, e′V −1

R

]
⊗ [0K×K , A] . (A.19)

Using the expression of ∂λ/∂ϕ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =
∞∑

j=−∞
E[ht(ϕ)ht+j(ϕ)′], (A.20)
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where

ht(ϕ) =
∂λ

∂ϕ′
rt(ϕ)

= A(Rt − µR) + vec

(
[0′K , e

′V −1
R ][(Yt − µ)(Yt − µ)′ − V ]

[
H

0N×K

])

− vec

(
[0K×K , A][(Yt − µ)(Yt − µ)′ − V ]

[
λ

V −1
R e

])
= (λt − λ) +H(ft − µf )ut −A(Rt − µR)(ft − µf )′λ−A(Rt − µR)ut +AVR,fλ

= (λt − λ) +AGtλ+H(ft − µf )ut − (λt − λ)ut. (A.21)

This completes the proof of part (b).

(c) The partial derivatives of λ with respect to µ are the same as in the fixed weighting matrix

case. For the derivative of λ with respect to vec(V ), we use the product rule to obtain

∂λ

∂vec(V )′
= (µ′RΣ−1

d VR,f⊗IK)
∂vec(H)

∂vec(V )′
+(µ′RΣ−1

d ⊗H)
∂vec(Vf,R)

∂vec(V )′
+(µ′R⊗HVf,R)

∂vec(Σ−1
d )

∂vec(V )′
.

(A.22)

The last two terms are given by

(µ′RΣ−1
d ⊗H)

∂vec(Vf,R)

∂vec(V )′
= [H, 0K×N ]⊗ [0′K , µ

′
RΣ−1

d ], (A.23)

(µ′R ⊗HVf,R)
∂vec(Σ−1

d )

∂vec(V )′
= −(µ′RΣ−1

d ⊗A)Θ([−β, IN ]⊗ [−β, IN ]). (A.24)
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For the first term, we use the chain rule to obtain

(µ′RΣ−1
d VR,f ⊗ IK)

∂vec(H)

∂vec(V )′

= (µ′RΣ−1
d VR,f ⊗ IK)

∂vec(H)

∂vec(H−1)′
∂vec(H−1)

∂vec(V )′

= −(µ′RΣ−1
d VR,f ⊗ IK)(H ⊗H)

[
(Vf,RΣ−1

d ⊗ IK)
∂vec(Vf,R)

∂vec(V )′

+ (Vf,R ⊗ Vf,R)
∂vec(Σ−1

d )

∂vec(V )′
+ (IK ⊗ Vf,RΣ−1

d )
∂vec(VR,f )

∂vec(V )′

]
= −(λ′ ⊗H)

{(
[0K×K , Vf,RΣ−1

d ]⊗ [IK , 0K×N ]
)
KN+K

− (Vf,RΣ−1
d ⊗ Vf,RΣ−1

d )Θ([−β, IN ]⊗ [−β, IN ])

+ [IK , 0K×N ]⊗ [0K×K , Vf,RΣ−1
d ]
}

= [H, 0K×N ]⊗ [0′K , −λ′Vf,RΣ−1
d ]

+ (λ′Vf,RΣ−1
d ⊗A)Θ([−β, IN ]⊗ [−β, IN ])− [λ′, 0′N ]⊗ [0K×K , A]. (A.25)

Combining the three terms, we have

∂λ

∂vec(V )′
= [H, 0K×N ]⊗

[
0′K , e

′Σ−1
d

]
− [λ′, 0′N ]⊗ [0K×K , A]− (e′Σ−1

d ⊗A)Θ([−β, IN ]⊗ [−β, IN ]). (A.26)

Using the expression of ∂λ/∂ϕ′, we can simplify the asymptotic variance of λ̂ to

V (λ̂) =

∞∑
j=−∞

E[ht(ϕ)ht+j(ϕ)′], (A.27)

where

ht(ϕ) =
∂λ

∂ϕ′
rt(ϕ)

= A(Rt − µR) + vec

(
[0′K , e

′Σ−1
d ][(Yt − µ)(Yt − µ)′ − V ]

[
H

0N×K

])

− vec

(
[0K×K , A][(Yt − µ)(Yt − µ)′ − V ]

[
λ

0N

])

− (e′Σ−1
d ⊗A)Θvec

(
[−β, IN ][(Yt − µ)(Yt − µ)′ − V ]

[
−β′

IN

])
= (λt − λ) +H(ft − µf )ut −A(Rt − µR)(ft − µf )′λ

+AVR,fλ− (e′Σ−1
d ⊗A)Θvec(εtε

′
t − Σ)

= (λt − λ) +AGtλ+H(ft − µf )ut −AΨtΣ
−1
d e. (A.28)
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The second last equality follows from the first order condition Vf,RΣ−1
d e = 0K . This completes

the proof of part (c).

Note that when the model is correctly specified, we have e = 0N and ut = 0. In this case, we have

ht(ϕ) = (λt − λ) +AGtλ. (A.29)

This completes the proof of Proposition 1.

Proof of Proposition 2:

(a) We first derive the asymptotic distribution of

TQ̂ = T (µ̂′RŴ µ̂R − µ̂′RŴ β̂(β̂′Ŵ β̂)−1β̂′Ŵ µ̂R) (A.30)

under H0 : ρ2 = 1, where Ŵ
a.s.−→ W (this includes the known weighting matrix case as a

special case). This can be accomplished by using the GMM results of Hansen (1982). Let

θ = (θ′1, θ
′
2)′, where θ1 = (α′, vec(β)′)′ and θ2 = γ. Define

gt(θ) ≡

[
g1t(θ1)

g2t(θ)

]
=

[
lt ⊗ εt
Rt − βγ

]
, (A.31)

where lt = [1, f ′t ]
′ and εt = Rt − α − βft. When the model is correctly specified, we have

E[gt(θ)] = 0p+N , where p = N(K + 1). The sample moments of gt(θ) are given by

ḡT (θ) =

[
1
T

∑T
t=1 g1t(θ1)

1
T

∑T
t=1 g2t(θ)

]
. (A.32)

Let θ̂ = (θ̂′1, θ̂
′
2)′, where θ̂1 = (α̂′, vec(β̂)′)′ is the OLS estimator of α and β, and

θ̂2 = γ̂ = (β̂′Ŵ β̂)−1β̂′Ŵ µ̂R (A.33)

is the second-pass CSR estimator of γ. Note that θ̂ is the solution to the following first-order

condition

BT ḡT (θ) = 0p+K , (A.34)

where

BT =

[
Ip 0p×N

0K×p β̂′Ŵ

]
a.s.−→

[
Ip 0p×N

0K×p β′W

]
≡ B. (A.35)

36



Writing

lt ⊗ εt = vec(εtl
′
t) = (lt ⊗ IN )vec(εt), (A.36)

εt = Rt − α− βft = Rt − (l′t ⊗ IN )θ1, (A.37)

βγ = (γ′ ⊗ IN )vec(β), (A.38)

we have:

∂g1t(θ1)

∂θ′1
= −ltl′t ⊗ IN , (A.39)

∂g1t(θ1)

∂θ′2
= 0p×K , (A.40)

∂g2t(θ)

∂θ′1
= [0, −γ′]⊗ IN , (A.41)

∂g2t(θ)

∂θ′2
= −β. (A.42)

Let

DT =
∂ḡT (θ)

∂θ′

=

[
−
(

1
T

∑T
t=1 ltl

′
t

)
⊗ IN 0p×K

[0, −γ′]⊗ IN −β

]
a.s.−→

[
−E[ltl

′
t]⊗ IN 0p×K

[0, −γ′]⊗ IN −β

]
≡ D. (A.43)

Hansen (1982, Lemma 4.1) shows that when the model is correctly specified, we have:

√
T ḡT (θ̂)

A∼ N(0p+N , [Ip+N −D(BD)−1B]S[Ip+N −D(BD)−1B]′), (A.44)

where

S =
∞∑

j=−∞
E[gt(θ)gt+j(θ)

′]. (A.45)

Using the partitioned matrix inverse formula, it is easy to verify that

E[ltl
′
t]
−1 =

[
1 + µ′fV

−1
f µf −µ′fV

−1
f

−V −1
f µf V −1

f

]
. (A.46)
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It follows that

BD =

[
−E[ltl

′
t]⊗ IN 0p×K

[0, −γ′]⊗ β′W −H−1

]
, (A.47)

(BD)−1 =

[
−E[ltl

′
t]
−1 ⊗ IN 0p×K

[−γ′V −1
f µf , γ

′V −1
f ]⊗A −H

]
, (A.48)

D(BD)−1B =

[
Ip 0p×N

[−γ′V −1
f µf , γ

′V −1
f ]⊗ (IN − βA) −βA

]
, (A.49)

IN −D(BD)−1B =

[
0p×p 0p×N

[γ′V −1
f µf , −γ′V −1

f ]⊗ (IN − βA) IN − βA

]
. (A.50)

We now provide a simplification of the asymptotic distribution of ḡ2T (θ̂). From (A.44), we

have:
√
T ḡ2T (θ̂)

A∼ N(0N , Vq), (A.51)

where

Vq =
∞∑

j=−∞
E[qt(θ)qt+j(θ)

′], (A.52)

and

qt(θ) = [0N×p, IN ][Ip+N −D(BD)−1B]gt(θ)

= −(IN − βA)εtγ
′V −1
f (ft − µf ) + (IN − βA)(Rt − βγ)

= (IN − βA)[Rt − εtγ′V −1
f (ft − µf )]

= (IN − βA)εtyt

= [IN − β(β′Wβ)−1β′W ]εtyt

= W−
1
2 [IN −W

1
2β(β′Wβ)−1β′W

1
2 ]W

1
2 εtyt

= W−
1
2 [IN −W

1
2VR,f (Vf,RWVR,f )−1Vf,RW

1
2 ]W

1
2 εtyt

= W−
1
2PP ′W

1
2 εtyt, (A.53)

where yt = 1 − λ′(ft − µf ) = 1 − γ′V −1
f (ft − µf ). The fourth equality follows from the fact

that, under H0 : ρ2 = 1, (IN −βA)Rt = (IN −βA)εt. With this expression of qt, we can write

Vq as

Vq = W−
1
2PP ′W

1
2SW

1
2PP ′W−

1
2 , (A.54)
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where S is the asymptotic covariance matrix of 1√
T

∑T
t=1 εtyt. Having derived the asymptotic

distribution of ḡ2T (θ̂), the asymptotic distribution of Q̂ is given by

TQ̂ = T ḡ2T (θ̂)′Ŵ ḡ2T (θ)
A∼
N−K∑
j=1

ξjxj , (A.55)

where the xj ’s are independent χ2
1 random variables, and the ξj ’s are the N − K nonzero

eigenvalues of

W
1
2VqW

1
2 = PP ′W

1
2SW

1
2PP ′. (A.56)

Equivalently, the ξj ’s are the eigenvalues of P ′W
1
2SW

1
2P . Since Q̂0

a.s.−→ Q0 > 0, we have:

T (ρ̂2 − 1) = −TQ̂
Q̂0

A∼ −
N−K∑
j=1

ξj
Q0

xj . (A.57)

This completes the proof of part (a).

(b) The proof uses the same notation and delta method employed in Proposition 1 to obtain the

asymptotic distribution of ρ̂2 as

√
T (ρ̂2 − ρ2)

A∼ N

0,

∞∑
j=−∞

E[ntnt+j ]

 , (A.58)

where

nt =
∂ρ2

∂ϕ′
rt(ϕ). (A.59)

Obtaining an explicit expression for nt requires computing ∂ρ2/∂ϕ′. For the known weighting

matrix case and the estimated GLS and WLS cases, we have

∂ρ2

∂µf
= 0K , (A.60)

∂ρ2

∂µR
= 2Q−1

0 W [(1− ρ2)µR − e]. (A.61)

Equation (A.60) follows because ρ2 does not depend on µf . For (A.61), using the first order

condition β′We = 0K and letting Q0 = µ′RWµR, we have

∂Q0

∂µR
= 2WµR,

∂Q

∂µR
= 2We. (A.62)

It follows that

∂ρ2

∂µR
= −Q−1

0

∂Q

∂µR
+Q−2

0 Q
∂Q0

∂µR
= −2Q−1

0 We+ 2QQ−2
0 WµR = 2Q−1

0 W [(1− ρ2)µR − e].

(A.63)
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The expression for ∂ρ2/∂vec(V )′, however, depends on whether we use a known W or an

estimate of W , say Ŵ , as the weighting matrix. We start with the known weighting matrix

W case. Differentiating Q = e′We with respect to vec(V ), we obtain:

∂Q

∂vec(V )′
= 2e′W

∂(µR − βγ)

∂vec(V )′
= −2e′W

[
(γ′ ⊗ IN )

∂vec(β)

∂vec(V )′
+ β

∂γ

∂vec(V )′

]
. (A.64)

Note that the second term vanishes because of the first order condition β′We = 0K . Using

∂vec(β)

∂vec(V )′
= [V −1

f , 0K×N ]⊗ [−β, IN ]. (A.65)

for the first term and the fact that β′We = 0K gives

∂Q

∂vec(V )′
= −2e′W

(
[γ′V −1

f , 0′N ]⊗ [−β, IN ]
)

= −2
(

[γ′V −1
f , 0′N ]⊗ [0′K , e

′W ]
)
. (A.66)

Since Q0 = µ′RWµR does not depend on V , we have:

∂ρ2

∂vec(V )′
= −Q−1

0

∂Q

∂vec(V )′
= 2Q−1

0

[
γ′V −1

f , 0′N

]
⊗
[
0′K , e

′W
]
. (A.67)

Therefore, for the known weighting matrix W case, nt is given by

nt =
∂ρ2

∂ϕ′
rt(ϕ)

= 2Q−1
0 [(1− ρ2)µ′R − e′]W (Rt − µR) + 2Q−1

0 e′W (Rt − µR)(ft − µf )′V −1
f γ

= 2Q−1
0 [−utyt + (1− ρ2)vt]. (A.68)

We now turn to the Ŵ = V̂ −1
R case. Differentiating Q = e′V −1

R e with respect to vec(V ), we

obtain:

∂Q

∂vec(V )′
= 2e′V −1

R

∂(µR − βγ)

∂vec(V )′
+ (e′ ⊗ e′)

∂vec(V −1
R )

∂vec(V )′

= −2
(

[γ′V −1
f , 0′N ]⊗ [0′K , e

′V −1
R ]
)
− (e′ ⊗ e′)

(
[0N×K , V

−1
R ]⊗ [0N×K , V

−1
R ]
)

= −[2γ′V −1
f , e′V −1

R ]⊗ [0′K , e
′V −1
R ]. (A.69)

Similarly, we have:

∂Q0

∂vec(V )′
= −[0′K , µ

′
RV
−1
R ]⊗ [0′K , µ

′
RV
−1
R ]. (A.70)

It follows that

∂ρ2

∂vec(V )′
= −Q−1

0

∂Q

∂vec(V )′
+Q−2

0 Q
∂Q0

∂vec(V )′

= Q−1
0

[
2γ′V −1

f , e′V −1
R

]
⊗
[
0′K , e

′V −1
R

]
−Q−1

0 (1− ρ2)
[
0′K , µ

′
RV
−1
R

]
⊗
[
0′K , µ

′
RV
−1
R

]
. (A.71)
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Therefore, we have:

nt =
∂ρ2

∂ϕ′
rt(ϕ)

= 2Q−1
0 [(1− ρ2)µ′R − e′]V −1

R (Rt − µR) +Q−1
0 e′V −1

R (Rt − µR)[2γ′V −1
f (ft − µf )

+ e′V −1
R (Rt − µR)]−Q−1

0 (1− ρ2)[µ′RV
−1
R (Rt − µR)]2 −Q−1

0 Q+Q−1
0 (1− ρ2)Q0

= Q−1
0 [u2

t − 2utyt + (1− ρ2)(2vt − v2
t )]. (A.72)

Finally, for the WLS case, we can use

∂vec(Σ−1
d )

∂vec(V )′
=
∂vec(Σ−1

d )

∂vec(Σd)′
∂vec(Σd)

∂vec(Σ)′
∂vec(Σ)

∂vec(V )′
= −(Σ−1

d ⊗Σ−1
d )Θ([−β, IN ]⊗[−β, IN ]). (A.73)

and show that

∂ρ2

∂vec(V )′
= Q−1

0

{[
2γ′V −1

f , 0′N

]
⊗
[
0′K , e

′Σ−1
d

]
+
(
e′Σ−1

d ⊗ e
′Σ−1
d

)
Θ ([−β, IN ]⊗ [−β, IN ])

}
−Q−1

0 (1− ρ2)
(
µ′RΣ−1

d ⊗ µ
′
RΣ−1

d

)
Θ ([−β, IN ]⊗ [−β, IN ]) . (A.74)

It is then straightforward to obtain

nt =
∂ρ2

∂ϕ′
rt(ϕ)

= 2Q−1
0 [(1− ρ2)vt − ut] + 2Q−1

0 utγ
′V −1
f (ft − µf ) +Q−1

0 e′Σ−1
d Diag(εtε

′
t)Σ
−1
d e

−Q−1
0 (1− ρ2)µ′RΣ−1

d Diag(εtε
′
t)Σ
−1
d µR −Q−1

0 Q+Q−1
0 (1− ρ2)Q0

= Q−1
0

[
−2utyt + e′Γte+ (1− ρ2)(2vt − µ′RΓtµR)

]
. (A.75)

This completes the proof of part (b).

(c) We start by rewriting Q0 −Q as

Q0 −Q = µ′RWVR,f (Vf,RWVR,f )−1Vf,RWµR

= λ′(Vf,RWVR,f )λ. (A.76)

The matrix in the middle is positive definite because VR,f is assumed to be of full column

rank. Therefore, the necessary and sufficient condition for Q0 = Q (that is, ρ2 = 0) is λ = 0K .

Note that (A.76) also holds for its sample counterpart. As a consequence, we can write ρ̂2 as

ρ̂2 = 1− Q̂

Q̂0

=
Q̂0 − Q̂
Q̂0

=
λ̂′(V̂f,RŴ V̂R,f )λ̂

Q̂0

. (A.77)
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Under the null hypothesis H0 : λ = 0K , we have:

√
T λ̂

A∼ N(0K , V (λ̂)), (A.78)

where V (λ̂) is the asymptotic variance of λ̂ obtained under the potentially misspecified model.

As Q̂0
a.s.−→ Q0 > 0 and

V̂f,RŴ V̂R,f
a.s.−→ Vf,RWVR,f , (A.79)

it follows that

T ρ̂2 A∼
K∑
j=1

ξj
Q0

xj , (A.80)

where the xj ’s are independent χ2
1 random variables and the ξj ’s are the eigenvalues of

(Vf,RWVR,f )V (λ̂). (A.81)

This completes the proof of part (c).
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Table I.1
Multiple Predictive Regressions for Theory Motivated ICAPM State Variables

The table presents the estimation results of the multiple long-horizon predictive regressions corresponding to
the models explicitly proposed as ICAPM applications. The forecasted variable is the monthly continuously
compounded return on the value-weighted stock market index, at horizons q of 1, 12 and 60 months ahead.
The forecasting variables are the current values of the term spread (TERM), default spread (DEF), market
dividend yield (DY), one-month Treasury bill rate (RF), market price-earnings ratio (PE), value spread (VS),
Cochrane-Piazzesi factor (CP). The original sample is from July 1963 to December 2018 but q observations
are lost in each of the q-horizon regressions. We report parameter estimates and corresponding Newey-West
t-ratios computed with q lags in parenthesis.

Panel A: q = 1
TERM DEF DY RF PE VS CP

HL 0.15 0.51
(1.01) (0.97)

P 0.19 0.15 0.01 -0.64
(0.83) (0.23) (1.83) (-0.47)

CV 0.36 -0.00 -0.03
(2.19) (-0.93) (-2.40)

KLVN 0.07 0.19
(0.42) (1.77)

Panel B: q = 12
TERM DEF DY RF PE VS CP

HL 1.21 6.42
(0.85) (2.11)

P 1.43 2.39 0.14 -8.60
( 0.85) ( 0.72) ( 2.29) (-0.98)

CV 2.78 -0.09 -0.14
(1.87) (-1.82) (-0.89)

KLVN 1.02 0.95
(0.61) (0.94)

Panel C: q = 60
TERM DEF DY RF PE VS CP

HL 5.50 26.75
(1.14) (2.71)

P 12.82 5.36 0.45 16.52
(2.68) (0.55) (4.96) (0.69)

CV 8.85 -0.52 0.22
(2.67) (-7.32) (1.33)

KLVN 5.60 2.70
(1.13) (1.44)
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Table I.2
Multiple Predictive Regressions for Empirically Motivated ICAPM State Variables

The table presents the estimation results of the multiple long-horizon predictive regressions corresponding to
the empirical models that have been given a ICAPM interpretation. The forecasted variable is the monthly
continuously compounded return on the value-weighted stock market index, at horizons q of 1, 12 and
60 months ahead. The forecasting variables are the current values of the size factor for the FF3 model
(SMB∗

FF3), value factor for the FF3 model (HML∗
FF3), cumulative momentum factor (CUMD), cumulative

liquidity factor (CL), term spread (TERM), default spread (DEF), size factor for the FF5 model (SMB∗
FF5),

value factor for the FF5 model (HML∗
FF5), profitability factor for the FF5 model (RMW∗

FF5), investment
factor for the FF5 model (CMA∗

FF5). The original sample is from July 1963 to December 2018 but q
observations are lost in each of the q-horizon regressions. We report parameter estimates and corresponding
Newey-West t-ratios computed with q lags in parenthesis.

Panel A: q = 1
SMB∗FF3 HML∗FF3 CUMD CL TERM DEF SMB∗FF5 HML∗FF5 RMW∗FF5 CMA∗FF5

FF3 0.01 0.00
(0.99) (1.57)

C 0.01 0.00 -0.01
(0.53) (1.79) (-1.33)

PS 0.00 0.01 0.01
(0.07) (1.70) (1.04)

FFTD 0.01 0.00 0.23 0.22
(0.88) (1.38) (1.45) (0.34)

FF5 0.00 -0.00 -0.00 0.01
(0.43) (-0.10) (-0.45) (1.67)

Panel B: q = 12
SMB∗FF3 HML∗FF3 CUMD CL TERM DEF SMB∗FF5 HML∗FF5 RMW∗FF5 CMA∗FF5

FF3 0.17 0.02
(1.55) (1.40)

C 0.17 0.02 -0.01
(1.47) (1.44) (-0.15)

PS 0.13 0.03 0.02
(0.97) (1.24) (0.48)

FFTD 0.15 0.02 1.96 3.66
(1.44) (1.25) (1.44) (1.10)

FF5 0.06 -0.02 -0.06 0.07
(1.04) (-0.67) (-0.90) (0.83)

Panel C: q = 60
SMB∗FF3 HML∗FF3 CUMD CL TERM DEF SMB∗FF5 HML∗FF5 RMW∗FF5 CMA∗FF5

FF3 0.39 0.14
(1.86) (3.81)

C 0.47 0.14 0.14
(2.41) (3.48) (0.77)

PS 0.36 0.15 0.01
(1.07) (2.31) (0.09)

FFTD 0.35 0.14 7.51 11.43
(1.73) (4.76) (2.01) (1.00)

FF5 0.12 -0.04 -0.40 -0.02
(1.07) (-0.48) (-2.82) (-0.14)
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Table II.1
Sample Cross-Sectional R2s and Specification Tests of the Models Using the 25 Size

and Book-to-Market Portfolios as Test Assets

The table presents the sample cross-sectional R2 (ρ̂2) and the generalized CSRT (Q̂c) of nine asset-pricing
models. The models include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova
(2006) (P), Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN),
the Fama and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and
Stambaugh (2003) model (PS), the Fama and French (1993) three-factor model augmented by TERM and
DEF (FFTD), and the Fama and French (2015) five-factor model (FF5). The models are estimated using
monthly excess returns on the 25 Fama-French size and book-to-market ranked portfolios. The data are
from July 1963 to December 2018 (666 observations). p(ρ2 = 1) is the p-value for the test of H0 : ρ2 = 1.
p(ρ2 = 0) is the p-value for the test of H0 : ρ2 = 0. se(ρ̂2) is the standard error of ρ̂2 under the assumption
that 0 < ρ2 < 1. p(Qc = 0) is the p-value for the approximate F -test of H0 : Qc = 0. No. of para. is the
number of parameters in the model.

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.970 0.979 0.968 0.969 0.966 0.982 0.971 0.973 0.979
p(ρ2 = 1) 0.231 0.678 0.069 0.199 0.000 0.214 0.000 0.007 0.000
p(ρ2 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(ρ̂2) 0.020 0.018 0.021 0.023 0.020 0.015 0.017 0.017 0.013

Q̂c 0.049 0.025 0.052 0.054 0.144 0.052 0.099 0.061 0.092
p(Qc = 0) 0.095 0.696 0.048 0.046 0.000 0.045 0.000 0.008 0.000
No. of para. 3 5 4 3 3 4 4 5 5

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.288 0.433 0.310 0.355 0.212 0.491 0.246 0.313 0.336
p(ρ2 = 1) 0.002 0.252 0.001 0.016 0.000 0.040 0.000 0.000 0.000
p(ρ2 = 0) 0.005 0.014 0.019 0.002 0.000 0.000 0.003 0.008 0.000
se(ρ̂2) 0.150 0.209 0.146 0.155 0.074 0.152 0.092 0.129 0.095

Q̂c 0.081 0.037 0.080 0.061 0.145 0.062 0.115 0.088 0.096
p(Qc = 0) 0.001 0.259 0.000 0.015 0.000 0.010 0.000 0.000 0.000
No. of para. 3 5 4 3 3 4 4 5 5

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.979 0.983 0.979 0.980 0.974 0.986 0.976 0.979 0.982
p(ρ2 = 1) 0.320 0.582 0.124 0.295 0.000 0.154 0.000 0.004 0.000
p(ρ2 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(ρ̂2) 0.014 0.015 0.014 0.015 0.015 0.010 0.014 0.013 0.011

Q̂c 0.066 0.038 0.072 0.070 0.145 0.058 0.110 0.071 0.095
p(Qc = 0) 0.007 0.239 0.002 0.004 0.000 0.018 0.000 0.001 0.000
No. of para. 3 5 4 3 3 4 4 5 5
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Table II.2
Sample Cross-Sectional R2s and Specification Tests of the Models Using the 25 Size

and Momentum Portfolios as Test Assets

The table presents the sample cross-sectional R2 (ρ̂2) and the generalized CSRT (Q̂c) of nine asset-pricing
models. The models include the ICAPM specifications proposed by Hahn and Lee (2006) (HL), Petkova
(2006) (P), Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN),
the Fama and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and
Stambaugh (2003) model (PS), the Fama and French (1993) three-factor model augmented by TERM and
DEF (FFTD), and the Fama and French (2015) five-factor model (FF5). The models are estimated using
monthly excess returns on the 25 Fama-French size and book-to-market ranked portfolios. The data are
from July 1963 to December 2018 (666 observations). p(ρ2 = 1) is the p-value for the test of H0 : ρ2 = 1.
p(ρ2 = 0) is the p-value for the test of H0 : ρ2 = 0. se(ρ̂2) is the standard error of ρ̂2 under the assumption
that 0 < ρ2 < 1. p(Qc = 0) is the p-value for the approximate F -test of H0 : Qc = 0. No. of para. is the
number of parameters in the model.

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.856 0.928 0.880 0.910 0.787 0.971 0.851 0.925 0.979
p(ρ2 = 1) 0.002 0.065 0.039 0.442 0.000 0.000 0.207 0.122 0.115
p(ρ2 = 0) 0.001 0.001 0.001 0.001 0.001 0.000 0.003 0.001 0.000
se(ρ̂2) 0.095 0.056 0.094 0.089 0.116 0.017 0.169 0.064 0.015

Q̂c 0.063 0.032 0.037 0.021 0.164 0.112 0.019 0.032 0.043
p(Qc = 0) 0.011 0.420 0.304 0.917 0.000 0.000 0.928 0.437 0.117
No. of para. 3 5 4 3 3 4 4 5 5

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.116 0.347 0.087 0.145 0.127 0.369 0.164 0.202 0.476
p(ρ2 = 1) 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.008
p(ρ2 = 0) 0.089 0.009 0.314 0.173 0.003 0.000 0.022 0.028 0.000
se(ρ̂2) 0.076 0.181 0.053 0.131 0.059 0.095 0.088 0.096 0.133

Q̂c 0.170 0.066 0.200 0.141 0.229 0.115 0.162 0.154 0.066
p(Qc = 0) 0.000 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.003
No. of para. 3 5 4 3 3 4 4 5 5

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

ρ̂2 0.907 0.942 0.912 0.933 0.917 0.978 0.933 0.952 0.989
p(ρ2 = 1) 0.000 0.071 0.012 0.388 0.000 0.000 0.032 0.036 0.160
p(ρ2 = 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
se(ρ̂2) 0.056 0.048 0.065 0.068 0.046 0.013 0.056 0.038 0.007

Q̂c 0.104 0.041 0.062 0.028 0.186 0.113 0.045 0.048 0.049
p(Qc = 0) 0.000 0.157 0.010 0.690 0.000 0.000 0.117 0.062 0.057
No. of para. 3 5 4 3 3 4 4 5 5
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Table III.1
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Book-to-Market Portfolios as Test Assets
The table presents the estimation results of nine asset-pricing models. The models include the ICAPM
specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P), Campbell and Vuolteenaho (2004)
(CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama and French (1993) three-factor
model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003) model (PS), the Fama and
French (1993) three-factor model augmented by TERM and DEF (FFTD), and the Fama and French (2015)
five-factor model (FF5). The models are estimated using monthly excess returns on the 25 Fama-French size
and book-to-market ranked portfolios. The data are from July 1963 to December 2018 (666 observations).

We report parameter estimates λ̂, the Fama and MacBeth (1973) t-ratio under correctly specified models (t-
ratiofm), the Shanken (1992) and the Jagannathan and Wang (1998) t-ratios under correctly specified models
that account for the EIV problem (t-ratios and t-ratiojw, respectively), and our model misspecification-robust
t-ratios (t-ratiopm).

Panel A:OLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate -0.63 495.37 182.31 -7.25 339.23 725.36 -11.25 -1363.82
t-ratiofm (-0.55) ( 4.66) ( 0.65) (-1.42) ( 2.67) ( 3.31) (-1.13) (-2.38)
t-ratios (-0.32) ( 2.70) ( 0.38) (-0.70) ( 1.32) ( 1.63) (-0.55) (-1.17)
t-ratiojw (-0.28) ( 2.46) ( 0.37) (-0.71) ( 1.17) ( 1.71) (-0.57) (-1.12)
t-ratiopm (-0.29) ( 2.53) ( 0.35) (-0.55) ( 0.97) ( 1.53) (-0.40) (-0.58)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate -0.65 485.08 -0.50 0.57 -0.29 430.61 29.08 3.26 1.74 6.56
t-ratiofm (-0.17) ( 4.27) (-0.07) ( 0.10) (-0.17) ( 3.20) ( 0.66) ( 3.36) ( 1.26) ( 4.40)
t-ratios (-0.10) ( 2.56) (-0.04) ( 0.06) (-0.11) (1.78) (0.73) ( 3.27) ( 1.23) ( 4.25)
t-ratiojw (-0.10) ( 2.27) (-0.04) ( 0.07) (-0.10) ( 1.88) ( 0.41) ( 3.01) ( 1.25) ( 4.25)
t-ratiopm (-0.10) ( 2.39) (-0.04) ( 0.04) (-0.11) ( 2.03) ( 0.39) ( 3.01) ( 1.25) ( 4.23)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 7.70 1.14 14.19 21.07 -0.86 0.74 6.08 10.14
t-ratiofm ( 6.49) ( 0.82) ( 7.18) ( 6.21) (-0.48) ( 0.50) ( 4.12) ( 2.55)
t-ratios ( 4.80) ( 0.62) ( 5.28) ( 4.60) (-0.42) ( 0.44) ( 3.55) ( 2.21)
t-ratiojw ( 3.75) ( 0.48) ( 4.09) ( 3.53) (-0.42) ( 0.36) ( 3.02) ( 1.97)
t-ratiopm ( 3.55) ( 0.49) ( 4.18) ( 2.91) (-0.36) ( 0.35) ( 2.99) ( 1.80)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 0.99 2.15 3.09 301.70 430.77 3.96 5.88 3.65 13.98 3.23
t-ratiofm ( 0.84) ( 1.50) ( 1.72) ( 3.73) ( 2.34) ( 3.03) ( 3.57) ( 0.86) ( 3.68) ( 0.38)
t-ratios ( 0.58) ( 1.04) ( 1.20) ( 2.59) ( 1.63) ( 2.86) ( 3.35) ( 0.82) ( 3.45) ( 0.36)
t-ratiojw ( 0.48) ( 1.07) ( 1.12) ( 2.38) ( 1.77) ( 2.72) ( 3.33) ( 0.81) ( 3.04) ( 0.37)
t-ratiopm ( 0.40) ( 1.04) ( 0.81) ( 1.35) ( 1.47) ( 2.58) ( 3.33) ( 0.58) ( 2.41) ( 0.26)
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Table III.1 (Continued)
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Book-to-Market Portfolios as Test Assets
Panel B:GLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 0.73 309.76 84.34 -10.97 279.96 443.78 -21.49 -593.66
t-ratiofm ( 0.72) ( 5.09) ( 0.70) (-3.19) ( 3.79) ( 3.02) (-3.23) (-1.25)
t-ratios ( 0.55) ( 3.80) ( 0.53) (-1.92) ( 2.28) ( 1.82) (-1.95) (-0.75)
t-ratiojw ( 0.50) ( 3.65) ( 0.57) (-1.93) ( 2.21) ( 1.88) (-1.89) (-0.79)
t-ratiopm ( 0.50) ( 2.69) ( 0.37) (-1.29) ( 1.52) ( 1.28) (-1.23) (-0.46)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate -1.99 282.35 4.51 6.68 1.15 314.46 55.50 3.38 1.85 5.90
t-ratiofm (-0.83) ( 4.49) ( 1.12) ( 1.58) ( 1.14) ( 5.17) ( 3.00) ( 3.55) ( 1.37) ( 4.03)
t-ratios (-0.64) ( 3.43) ( 0.86) ( 1.21) ( 0.81) ( 3.62) ( 2.12) ( 3.45) ( 1.34) ( 3.90)
t-ratiojw (-0.71) ( 3.31) ( 0.97) ( 1.14) ( 0.75) ( 3.41) ( 2.05) ( 3.15) ( 1.37) ( 3.87)
t-ratiopm (-0.55) ( 2.26) ( 0.69) ( 0.63) ( 0.73) ( 2.64) ( 1.38) ( 3.14) ( 1.36) ( 3.85)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 6.67 1.59 12.06 17.13 0.92 1.06 5.87 6.34
t-ratiofm ( 6.06) ( 1.18) ( 6.72) ( 5.95) ( 0.61) ( 0.76) ( 4.01) ( 2.06)
t-ratios ( 4.83) ( 0.96) ( 5.34) ( 4.74) ( 0.57) ( 0.71) ( 3.71) ( 1.92)
t-ratiojw ( 3.85) ( 0.82) ( 4.26) ( 4.05) ( 0.54) ( 0.66) ( 3.30) ( 1.70)
t-ratiopm ( 3.58) ( 0.82) ( 4.07) ( 3.21) ( 0.37) ( 0.60) ( 3.29) ( 1.11)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 1.54 1.23 3.00 238.54 128.14 4.97 4.74 1.31 12.38 9.13
t-ratiofm ( 1.34) ( 0.87) ( 1.71) ( 3.27) ( 1.03) ( 4.01) ( 2.96) ( 0.34) ( 3.76) ( 1.19)
t-ratios ( 1.09) ( 0.71) ( 1.40) ( 2.66) ( 0.84) ( 3.77) ( 2.80) ( 0.33) ( 3.55) ( 1.14)
t-ratiojw ( 1.00) ( 0.69) ( 1.37) ( 2.52) ( 0.91) ( 3.60) ( 2.80) ( 0.31) ( 2.91) ( 1.17)
t-ratiopm ( 0.92) ( 0.69) ( 1.11) ( 1.61) ( 0.59) ( 3.17) ( 2.64) ( 0.21) ( 2.29) ( 0.75)
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Table III.1 (Continued)
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Book-to-Market Portfolios as Test Assets
Panel C:WLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 0.13 392.99 83.67 -2.43 257.46 425.95 -3.17 -1288.26
t-ratiofm ( 0.11) ( 3.79) ( 0.30) (-0.43) ( 2.02) ( 2.09) (-0.29) (-2.18)
t-ratios ( 0.08) ( 2.55) ( 0.20) (-0.25) ( 1.19) ( 1.23) (-0.17) (-1.28)
t-ratiojw ( 0.07) ( 2.43) ( 0.19) (-0.25) ( 1.09) ( 1.15) (-0.16) (-1.25)
t-ratiopm ( 0.07) ( 2.44) ( 0.18) (-0.22) ( 0.99) ( 0.96) (-0.14) (-0.68)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate -0.41 348.48 1.05 3.81 0.72 329.01 26.14 3.39 1.67 6.08
t-ratiofm (-0.10) ( 3.13) ( 0.13) ( 0.67) ( 0.50) ( 2.92) ( 0.69) ( 3.51) ( 1.22) ( 4.07)
t-ratios (-0.07) ( 2.24) ( 0.09) ( 0.48) ( 0.37) ( 2.14) ( 0.51) ( 3.41) ( 1.19) ( 3.94)
t-ratiojw (-0.07) ( 2.12) ( 0.09) ( 0.51) ( 0.35) ( 2.03) ( 0.48) ( 3.13) ( 1.21) ( 3.93)
t-ratiopm (-0.07) ( 2.06) ( 0.09) ( 0.33) ( 0.36) ( 2.00) ( 0.47) ( 3.14) ( 1.21) ( 3.92)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 7.16 1.26 12.69 18.58 0.22 0.92 5.62 7.73
t-ratiofm ( 6.31) ( 0.92) ( 6.67) ( 5.90) ( 0.13) ( 0.63) ( 3.81) ( 2.15)
t-ratios ( 4.89) ( 0.73) ( 5.16) ( 4.58) ( 0.12) ( 0.58) ( 3.45) ( 1.95)
t-ratiojw ( 3.90) ( 0.58) ( 4.18) ( 3.66) ( 0.12) ( 0.51) ( 3.01) ( 1.70)
t-ratiopm ( 3.61) ( 0.59) ( 4.01) ( 2.82) ( 0.08) ( 0.46) ( 2.97) ( 1.14)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 0.55 0.57 1.82 343.94 69.40 4.14 5.50 2.56 13.05 4.76
t-ratiofm ( 0.46) ( 0.40) ( 1.02) ( 4.29) ( 0.41) ( 3.21) ( 3.37) ( 0.62) ( 3.63) ( 0.57)
t-ratios ( 0.33) ( 0.29) ( 0.73) ( 3.07) ( 0.30) ( 3.04) ( 3.19) ( 0.59) ( 3.43) ( 0.54)
t-ratiojw ( 0.30) ( 0.27) ( 0.74) ( 2.87) ( 0.32) ( 2.87) ( 3.19) ( 0.58) ( 2.94) ( 0.56)
t-ratiopm ( 0.26) ( 0.28) ( 0.54) ( 1.65) ( 0.23) ( 2.66) ( 3.14) ( 0.41) ( 2.35) ( 0.40)
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Table III.2
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Momentum Portfolios as Test Assets
The table presents the estimation results of nine asset-pricing models. The models include the ICAPM
specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P), Campbell and Vuolteenaho (2004)
(CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama and French (1993) three-factor model
(FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003) model (PS), the Fama and French
(1993) three-factor model augmented by TERM and DEF (FFTD), and the Fama and French (2015) five-
factor model (FF5). The models are estimated using monthly excess returns on the 25 Fama-French size and
momentum ranked portfolios. The data are from July 1963 to December 2018 (666 observations). We report

parameter estimates λ̂, the Fama and MacBeth (1973) t-ratio under correctly specified models (t-ratiofm),
the Shanken (1992) and the Jagannathan and Wang (1998) t-ratios under correctly specified models that
account for the EIV problem (t-ratios and t-ratiojw, respectively), and our model misspecification-robust
t-ratios (t-ratiopm).

Panel A:OLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 6.88 -500.30 -341.54 -0.22 -607.32 51.95 -4.92 -3014.52
t-ratiofm ( 5.63) (-4.36) (-1.58) (-0.07) (-5.05) ( 0.28) (-0.80) (-5.94)
t-ratios ( 3.15) (-2.44) (-0.89) (-0.03) (-2.28) ( 0.13) (-0.36) (-2.68)
t-ratiojw ( 2.27) (-1.93) (-0.82) (-0.03) (-1.67) ( 0.12) (-0.35) (-2.09)
t-ratiopm ( 2.49) (-2.26) (-0.71) (-0.02) (-1.55) ( 0.10) (-0.19) (-1.68)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate 5.05 -719.79 6.01 21.23 10.94 -745.59 182.96 1.00 2.69 -8.33
t-ratiofm (1.37) (-4.55) ( 0.77) ( 2.87) ( 6.64) (-5.48) ( 4.62) ( 0.91) ( 1.84) (-2.55)
t-ratios ( 0.57) (-1.89) ( 0.32) ( 1.20) ( 2.20) (-1.82) ( 1.54) ( 0.88) ( 1.77) (-2.45)
t-ratiojw ( 0.49) (-1.59) ( 0.30) ( 1.00) ( 1.68) (-1.55) ( 1.43) ( 0.83) ( 1.71) (-2.43)
t-ratiopm ( 0.42) (-2.21) ( 0.26) ( 0.71) ( 2.09) (-2.02) ( 1.66) ( 0.84) ( 1.66) (-1.86)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 5.59 1.17 12.44 6.67 -17.92 -1.83 -17.30 44.39
t-ratiofm ( 5.21) ( 0.81) ( 4.51) ( 6.34) (-5.56) (-1.19) (-4.15) ( 7.03)
t-ratios ( 4.75) ( 0.75) ( 4.13) ( 5.73) (-2.16) (-0.46) (-1.61) ( 2.72)
t-ratiojw ( 3.81) ( 0.70) ( 3.80) ( 3.92) (-1.41) (-0.37) (-1.03) ( 1.64)
t-ratiopm ( 3.82) ( 0.69) ( 3.68) ( 3.97) (-1.47) (-0.29) (-1.39) ( 1.55)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 10.20 7.88 14.02 -870.28 398.16 10.46 8.18 -43.38 19.48 79.66
t-ratiofm ( 6.61) ( 4.72) ( 4.39) (-5.97) ( 2.30) ( 6.58) ( 3.61) (-5.93) ( 3.43) ( 6.14)
t-ratios ( 2.59) ( 1.86) ( 1.73) (-2.34) ( 0.91) ( 4.33) ( 2.40) (-3.91) ( 2.28) ( 4.05)
t-ratiojw ( 1.73) ( 1.68) ( 1.47) (-1.59) ( 0.71) ( 3.93) ( 1.83) (-3.24) ( 1.57) ( 3.70)
t-ratiopm ( 2.07) ( 1.74) ( 1.57) (-2.01) ( 0.50) ( 3.24) ( 1.67) (-3.14) ( 1.36) ( 2.95)
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Table III.2 (Continued)
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Momentum Portfolios as Test Assets
Panel B:GLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 3.76 -45.13 277.89 -2.33 -170.88 350.89 -6.76 -1875.44
t-ratiofm ( 3.76) (-0.80) ( 2.20) (-1.01) (-2.84) ( 2.66) (-1.57) (-5.23)
t-ratios ( 3.51) (-0.76) ( 2.06) (-0.66) (-1.86) ( 1.74) (-1.03) (-3.41)
t-ratiojw ( 3.31) (-0.72) ( 2.04) (-0.62) (-1.56) ( 1.66) (-1.06) (-3.23)
t-ratiopm ( 2.86) (-0.47) ( 1.14) (-0.50) (-1.23) ( 1.19) (-0.77) (-2.03)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate 1.65 -50.98 3.21 -1.57 4.19 -70.59 55.85 3.20 2.48 4.83
t-ratiofm ( 0.69) (-0.89) ( 0.77) (-0.37) ( 4.11) (-1.24) ( 3.02) ( 3.20) ( 1.76) ( 2.08)
t-ratios ( 0.68) (-0.87) ( 0.75) (-0.36) ( 3.45) (-1.05) ( 2.55) ( 3.12) ( 1.72) ( 2.04)
t-ratiojw ( 0.66) (-0.85) ( 0.74) (-0.34) ( 3.07) (-1.02) ( 2.45) ( 2.88) ( 1.79) ( 2.08)
t-ratiopm ( 0.38) (-0.51) ( 0.40) (-0.18) ( 2.44) (-0.62) ( 1.00) ( 2.86) ( 1.74) ( 1.65)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 4.89 2.23 10.54 6.07 0.53 1.90 3.28 6.17
t-ratiofm ( 4.69) ( 1.58) ( 4.19) ( 5.92) ( 0.34) ( 1.33) ( 1.36) ( 2.32)
t-ratios ( 4.36) ( 1.49) ( 3.90) ( 5.45) ( 0.32) ( 1.25) ( 1.28) ( 2.17)
t-ratiojw ( 3.58) ( 1.50) ( 3.69) ( 3.90) ( 0.30) ( 1.22) ( 1.08) ( 1.85)
t-ratiopm ( 3.59) ( 1.47) ( 3.29) ( 3.84) ( 0.19) ( 1.17) ( 0.87) ( 1.09)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 4.37 4.28 5.84 -119.76 366.15 8.05 8.84 -28.89 20.97 53.16
t-ratiofm ( 3.86) ( 2.83) ( 2.33) (-1.97) ( 2.71) ( 5.57) ( 4.27) (-5.21) ( 4.16) ( 5.16)
t-ratios ( 3.39) ( 2.49) ( 2.05) (-1.74) ( 2.39) ( 4.30) ( 3.31) (-4.02) ( 3.23) ( 3.99)
t-ratiojw ( 2.98) ( 2.64) ( 2.11) (-1.52) ( 2.20) ( 4.08) ( 2.92) (-3.94) ( 2.61) ( 3.93)
t-ratiopm ( 2.65) ( 2.39) ( 1.58) (-1.06) ( 1.32) ( 3.34) ( 2.60) (-2.92) ( 2.05) ( 2.76)
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Table III.2 (Continued)
Estimates and t-ratios of Prices of Covariance Risk Using the 25 Size and

Momentum Portfolios as Test Assets
Panel C:WLS

HL P

λ̂
(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
def λ̂

(+)
dy λ̂

(+)
rf

Estimate 5.02 -277.13 -426.03 -1.14 -430.90 -228.62 -4.03 -2694.15
t-ratiofm ( 4.10) (-2.61) (-1.84) (-0.37) (-4.10) (-1.12) (-0.66) (-5.58)
t-ratios ( 2.93) (-1.87) (-1.32) (-0.19) (-2.09) (-0.57) (-0.34) (-2.84)
t-ratiojw ( 2.21) (-1.52) (-1.27) (-0.17) (-1.56) (-0.59) (-0.32) (-2.30)
t-ratiopm ( 2.12) (-1.43) (-1.05) (-0.09) (-0.98) (-0.34) (-0.12) (-1.30)

CV KLVN FF3

λ̂
(+)
rm λ̂

(+)
term λ̂

(−)
pe λ̂

(+)
vs λ̂

(+)
rm λ̂

(+)
term λ̂

(+)
cp λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml

Estimate 1.51 -521.52 9.83 12.59 9.49 -577.07 165.58 1.66 3.61 -5.50
t-ratiofm ( 0.40) (-3.81) ( 1.27) ( 1.74) ( 6.21) (-4.71) ( 4.39) ( 1.59) ( 2.49) (-1.84)
t-ratios ( 0.22) (-2.05) ( 0.69) ( 0.94) ( 2.40) (-1.83) ( 1.70) ( 1.54) ( 2.41) (-1.79)
t-ratiojw ( 0.19) (-1.74) ( 0.64) ( 0.85) ( 1.90) (-1.63) ( 1.68) ( 1.45) ( 2.44) (-1.84)
t-ratiopm ( 0.16) (-2.29) ( 0.57) ( 0.50) ( 2.77) (-2.38) ( 1.95) ( 1.48) ( 2.42) (-1.65)

C PS

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
umd λ̂

(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
l

Estimate 5.22 1.84 11.97 6.40 -9.00 1.13 -10.84 24.63
t-ratiofm ( 4.90) ( 1.28) ( 4.41) ( 6.14) (-4.07) ( 0.77) (-3.12) ( 6.01)
t-ratios ( 4.50) ( 1.20) ( 4.06) ( 5.59) (-2.43) ( 0.46) (-1.87) ( 3.57)
t-ratiojw ( 3.64) ( 1.15) ( 3.84) ( 3.93) (-1.69) ( 0.40) (-1.21) ( 2.17)
t-ratiopm ( 3.64) ( 1.14) ( 3.74) ( 3.90) (-0.95) ( 0.29) (-1.35) ( 1.17)

FFTD FF5

λ̂
(+)
rm λ̂

(+)
smb λ̂

(+)
hml λ̂

(+)
term λ̂

(+)
def λ̂

(+)
rm λ̂

(+)
smb λ̂

(−)
hml λ̂

(−)
rmw λ̂

(−)
cma

Estimate 8.01 7.53 9.14 -656.02 334.33 9.09 9.77 -39.90 19.93 71.97
t-ratiofm ( 5.67) ( 4.45) ( 3.24) (-5.35) ( 1.79) ( 5.38) ( 4.14) (-5.29) ( 3.23) ( 5.05)
t-ratios ( 2.78) ( 2.18) ( 1.59) (-2.63) ( 0.88) ( 3.72) ( 2.87) (-3.66) ( 2.25) ( 3.50)
t-ratiojw ( 1.88) ( 2.03) ( 1.45) (-1.79) ( 0.75) ( 3.51) ( 2.20) (-3.29) ( 1.57) ( 3.47)
t-ratiopm ( 2.44) ( 2.11) ( 1.35) (-2.72) ( 0.49) ( 3.03) ( 2.07) (-3.21) ( 1.44) ( 3.00)
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Table IV.1
Multiple Sign Restriction Tests of the Models Using the 25 Size and Book-to-Market

Portfolios as Test Assets

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where the restrictions imposed are based on the signs of the respective coefficients from the long-horizon
predictive regressions, regardless of their statistical significance. This is a likelihood ratio test of the null
hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K . The models
include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P), Campbell
and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama and French
(1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003) model
(PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and the
Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns on
the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.30 8.12 0.03 0.03 0.00 0.00 0.23 0.00 27.89
p-valuefm ( 0.67) ( 0.02) ( 0.77) ( 0.89) ( 0.87) ( 0.88) ( 0.87) ( 0.97) ( 0.00)
LRs 0.10 1.96 0.01 0.01 0.00 0.00 0.18 0.00 24.17
p-values ( 0.78) ( 0.36) ( 0.79) ( 0.91) ( 0.87) ( 0.88) ( 0.89) ( 0.97) ( 0.00)
LRjw 0.08 1.99 0.01 0.01 0.00 0.00 0.17 0.00 17.53
p-valuejw ( 0.79) ( 0.37) ( 0.79) ( 0.91) ( 0.86) ( 0.89) ( 0.88) ( 0.97) ( 0.00)
LRpm 0.08 1.25 0.01 0.01 0.00 0.00 0.13 0.00 16.82
p-valuepm ( 0.78) ( 0.56) ( 0.81) ( 0.91) ( 0.86) ( 0.85) ( 0.90) ( 0.98) ( 0.00)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 18.32 1.26 0.00 0.00 0.00 0.00 0.00 31.23
p-valuefm ( 0.90) ( 0.00) ( 0.44) ( 0.89) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRs 0.00 6.64 0.75 0.00 0.00 0.00 0.00 0.00 27.13
p-valuefm ( 0.90) ( 0.07) ( 0.57) ( 0.89) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRjw 0.00 7.32 0.93 0.00 0.00 0.00 0.00 0.00 22.03
p-valuejw ( 0.89) ( 0.05) ( 0.51) ( 0.90) ( 0.86) ( 0.89) ( 0.97) ( 0.98) ( 0.00)
LRpm 0.00 3.82 0.48 0.00 0.00 0.00 0.00 0.00 20.67
p-valuepm ( 0.88) ( 0.23) ( 0.66) ( 0.90) ( 0.86) ( 0.87) ( 0.98) ( 0.98) ( 0.00)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 5.42 0.02 0.00 0.00 0.00 0.00 0.00 25.18
p-valuefm ( 0.89) ( 0.08) ( 0.78) ( 0.93) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRs 0.00 1.87 0.01 0.00 0.00 0.00 0.00 0.00 22.13
p-valuefm ( 0.89) ( 0.37) ( 0.80) ( 0.93) ( 0.87) ( 0.88) ( 0.98) ( 0.98) ( 0.00)
LRjw 0.00 1.87 0.01 0.00 0.00 0.00 0.00 0.00 16.34
p-valuejw ( 0.88) ( 0.38) ( 0.79) ( 0.92) ( 0.86) ( 0.89) ( 0.97) ( 0.97) ( 0.00)
LRpm 0.00 0.76 0.01 0.00 0.00 0.00 0.00 0.00 14.94
p-valuepm ( 0.87) ( 0.68) ( 0.82) ( 0.92) ( 0.86) ( 0.85) ( 0.98) ( 0.98) ( 0.00)
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Table IV.2
Multiple Sign Restriction Tests of the Models Using the 25 Size and Momentum

Portfolios as Test Assets

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where the restrictions imposed are based on the signs of the respective coefficients from the long-horizon
predictive regressions, regardless of their statistical significance. This is a likelihood ratio test of the null
hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K . The models
include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P), Campbell
and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama and French
(1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003) model
(PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and the
Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns on
the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 19.38 43.69 20.69 30.08 6.50 0.00 30.94 35.65 58.24
p-valuefm ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.03) ( 0.91) ( 0.00) ( 0.00) ( 0.00)
LRs 6.08 8.88 3.59 3.32 5.98 0.00 4.65 5.49 25.02
p-values ( 0.04) ( 0.02) ( 0.09) ( 0.16) ( 0.04) ( 0.90) ( 0.15) ( 0.13) ( 0.00)
LRjw 4.15 4.84 2.52 2.40 5.91 0.00 1.99 2.53 15.98
p-valuejw ( 0.10) ( 0.10) ( 0.18) ( 0.25) ( 0.04) ( 0.89) ( 0.41) ( 0.41) ( 0.00)
LRpm 5.92 6.13 4.88 4.07 3.48 0.00 3.31 4.05 13.71
p-valuepm ( 0.04) ( 0.07) ( 0.05) ( 0.11) ( 0.12) ( 0.89) ( 0.24) ( 0.22) ( 0.01)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.65 34.16 1.15 1.54 0.00 0.00 0.00 3.87 54.50
p-valuefm ( 0.56) ( 0.00) ( 0.39) ( 0.36) ( 0.87) ( 0.91) ( 0.97) ( 0.24) ( 0.00)
LRs 0.58 14.44 1.10 1.11 0.00 0.00 0.00 3.02 31.80
p-valuefm ( 0.58) ( 0.00) ( 0.40) ( 0.45) ( 0.86) ( 0.90) ( 0.97) ( 0.33) ( 0.00)
LRjw 0.52 13.27 1.05 1.04 0.00 0.00 0.00 2.30 21.13
p-valuejw ( 0.62) ( 0.00) ( 0.42) ( 0.46) ( 0.86) ( 0.88) ( 0.96) ( 0.42) ( 0.00)
LRpm 0.22 6.23 0.34 0.39 0.00 0.00 0.00 1.12 15.04
p-valuepm ( 0.73) ( 0.07) ( 0.58) ( 0.67) ( 0.85) ( 0.89) ( 0.98) ( 0.65) ( 0.00)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 10.12 36.17 14.52 22.15 3.40 0.00 16.71 28.67 47.89
p-valuefm ( 0.01) ( 0.00) ( 0.00) ( 0.00) ( 0.13) ( 0.91) ( 0.00) ( 0.00) ( 0.00)
LRs 5.21 9.35 4.22 3.33 3.20 0.00 5.96 6.90 22.57
p-valuefm ( 0.06) ( 0.01) ( 0.06) ( 0.16) ( 0.14) ( 0.90) ( 0.08) ( 0.07) ( 0.00)
LRjw 4.57 6.12 3.02 2.64 3.40 0.00 2.85 3.19 15.60
p-valuejw ( 0.08) ( 0.06) ( 0.14) ( 0.22) ( 0.13) ( 0.89) ( 0.27) ( 0.32) ( 0.00)
LRpm 4.68 6.79 5.22 5.66 2.74 0.00 1.98 7.40 13.66
p-valuepm ( 0.08) ( 0.06) ( 0.04) ( 0.05) ( 0.18) ( 0.89) ( 0.42) ( 0.05) ( 0.01)
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Table V.1
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and

Book-to-Market Portfolios as Test Assets
No restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise no restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama
and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003)
model (PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and
the Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns
on the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.30 2.02 0.03 0.03 0.00 0.00 0.23 0.00 13.52
p-valuefm ( 0.50) ( 0.18) ( 0.62) ( 0.43) ( 0.71) ( 0.85) ( 0.52) ( 0.93) ( 0.00)
LRs 0.10 0.49 0.01 0.01 0.00 0.00 0.18 0.00 11.94
p-valuefm ( 0.61) ( 0.45) ( 0.65) ( 0.46) ( 0.71) ( 0.85) ( 0.55) ( 0.93) ( 0.00)
LRjw 0.08 0.50 0.01 0.01 0.00 0.00 0.17 0.00 9.23
p-valuejw ( 0.63) ( 0.47) ( 0.64) ( 0.46) ( 0.70) ( 0.85) ( 0.57) ( 0.92) ( 0.00)
LRpm 0.08 0.30 0.01 0.01 0.00 0.00 0.13 0.00 5.81
p-valuepm ( 0.62) ( 0.58) ( 0.66) ( 0.46) ( 0.71) ( 0.81) ( 0.58) ( 0.95) ( 0.02)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 10.58 1.26 0.00 0.00 0.00 0.00 0.00 14.15
p-valuefm ( 0.72) ( 0.00) ( 0.29) ( 0.50) ( 0.72) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRs 0.00 3.85 0.75 0.00 0.00 0.00 0.00 0.00 12.58
p-valuefm ( 0.72) ( 0.08) ( 0.39) ( 0.50) ( 0.71) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRjw 0.00 3.77 0.93 0.00 0.00 0.00 0.00 0.00 8.45
p-valuejw ( 0.72) ( 0.09) ( 0.35) ( 0.50) ( 0.70) ( 0.84) ( 0.73) ( 0.93) ( 0.01)
LRpm 0.00 1.66 0.48 0.00 0.00 0.00 0.00 0.00 5.23
p-valuepm ( 0.71) ( 0.27) ( 0.43) ( 0.50) ( 0.70) ( 0.82) ( 0.73) ( 0.94) ( 0.03)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 0.18 0.02 0.00 0.00 0.00 0.00 0.00 13.17
p-valuefm ( 0.72) ( 0.59) ( 0.65) ( 0.50) ( 0.71) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRs 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 11.76
p-valuefm ( 0.72) ( 0.67) ( 0.66) ( 0.50) ( 0.71) ( 0.85) ( 0.73) ( 0.93) ( 0.00)
LRjw 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 8.64
p-valuejw ( 0.72) ( 0.68) ( 0.66) ( 0.50) ( 0.70) ( 0.84) ( 0.74) ( 0.92) ( 0.01)
LRpm 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 5.50
p-valuepm ( 0.72) ( 0.71) ( 0.67) ( 0.50) ( 0.70) ( 0.82) ( 0.73) ( 0.94) ( 0.02)
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Table V.2
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and

Momentum Portfolios as Test Assets
No restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise no restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama
and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003)
model (PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and
the Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns
on the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 2.49 25.48 20.69 0.00 6.50 0.00 30.94 35.65 11.73
p-valuefm ( 0.13) ( 0.00) ( 0.00) ( 0.50) ( 0.01) ( 0.86) ( 0.00) ( 0.00) ( 0.00)
LRs 0.79 5.21 3.59 0.00 5.98 0.00 4.65 5.49 5.20
p-valuefm ( 0.35) ( 0.03) ( 0.06) ( 0.50) ( 0.02) ( 0.86) ( 0.03) ( 0.06) ( 0.03)
LRjw 0.67 2.78 2.52 0.00 5.91 0.00 1.99 2.53 2.45
p-valuejw ( 0.37) ( 0.12) ( 0.13) ( 0.50) ( 0.02) ( 0.85) ( 0.12) ( 0.25) ( 0.13)
LRpm 0.50 2.39 4.88 0.00 3.48 0.00 3.31 4.05 1.84
p-valuepm ( 0.39) ( 0.13) ( 0.04) ( 0.50) ( 0.07) ( 0.85) ( 0.07) ( 0.12) ( 0.17)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 9.83 1.14 0.00 0.00 0.00 0.00 3.87 17.32
p-valuefm ( 0.72) ( 0.00) ( 0.31) ( 0.50) ( 0.70) ( 0.86) ( 0.68) ( 0.12) ( 0.00)
LRs 0.00 4.22 1.09 0.00 0.00 0.00 0.00 3.02 10.45
p-valuefm ( 0.72) ( 0.06) ( 0.32) ( 0.50) ( 0.70) ( 0.86) ( 0.68) ( 0.18) ( 0.00)
LRjw 0.00 3.37 1.04 0.00 0.00 0.00 0.00 2.30 6.82
p-valuejw ( 0.71) ( 0.10) ( 0.33) ( 0.50) ( 0.69) ( 0.84) ( 0.69) ( 0.25) ( 0.01)
LRpm 0.00 2.04 0.34 0.00 0.00 0.00 0.00 1.12 4.20
p-valuepm ( 0.70) ( 0.20) ( 0.49) ( 0.50) ( 0.69) ( 0.84) ( 0.66) ( 0.47) ( 0.05)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 3.37 16.82 14.52 0.00 3.40 0.00 16.71 28.67 10.42
p-valuefm ( 0.07) ( 0.00) ( 0.00) ( 0.50) ( 0.07) ( 0.86) ( 0.00) ( 0.00) ( 0.00)
LRs 1.75 4.38 4.22 0.00 3.20 0.00 5.96 6.90 5.05
p-valuefm ( 0.18) ( 0.05) ( 0.05) ( 0.50) ( 0.07) ( 0.86) ( 0.01) ( 0.03) ( 0.03)
LRjw 1.61 2.45 3.02 0.00 3.40 0.00 2.85 3.19 2.46
p-valuejw ( 0.19) ( 0.15) ( 0.10) ( 0.50) ( 0.07) ( 0.84) ( 0.08) ( 0.18) ( 0.13)
LRpm 1.11 0.96 5.22 0.00 2.74 0.00 1.98 7.40 2.06
p-valuepm ( 0.24) ( 0.26) ( 0.03) ( 0.50) ( 0.10) ( 0.84) ( 0.15) ( 0.02) ( 0.15)
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Table VI.1
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and

Book-to-Market Portfolios as Test Assets
Zero restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise a zero restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama
and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003)
model (PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and
the Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns
on the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.30 2.02 0.03 0.03 0.00 0.00 0.23 0.00 13.52
p-valuefm ( 0.66) ( 0.43) ( 0.80) ( 0.82) ( 0.86) ( 0.93) ( 0.79) ( 0.98) ( 0.00)
LRs 0.10 0.49 0.01 0.01 0.00 0.00 0.18 0.00 11.94
p-valuefm ( 0.76) ( 0.76) ( 0.82) ( 0.84) ( 0.86) ( 0.92) ( 0.82) ( 0.98) ( 0.01)
LRjw 0.08 0.50 0.01 0.01 0.00 0.00 0.17 0.00 9.23
p-valuejw ( 0.78) ( 0.76) ( 0.81) ( 0.84) ( 0.85) ( 0.93) ( 0.82) ( 0.98) ( 0.02)
LRpm 0.08 0.30 0.01 0.01 0.00 0.00 0.13 0.00 5.81
p-valuepm ( 0.77) ( 0.83) ( 0.82) ( 0.84) ( 0.85) ( 0.91) ( 0.84) ( 0.99) ( 0.10)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 10.58 1.26 0.00 0.00 0.00 0.00 0.00 14.15
p-valuefm ( 0.86) ( 0.01) ( 0.45) ( 0.88) ( 0.86) ( 0.93) ( 0.93) ( 0.98) ( 0.00)
LRs 0.00 3.85 0.75 0.00 0.00 0.00 0.00 0.00 12.58
p-valuefm ( 0.86) ( 0.22) ( 0.57) ( 0.88) ( 0.86) ( 0.92) ( 0.93) ( 0.98) ( 0.01)
LRjw 0.00 3.77 0.93 0.00 0.00 0.00 0.00 0.00 8.45
p-valuejw ( 0.86) ( 0.23) ( 0.52) ( 0.88) ( 0.85) ( 0.92) ( 0.93) ( 0.98) ( 0.03)
LRpm 0.00 1.66 0.48 0.00 0.00 0.00 0.00 0.00 5.23
p-valuepm ( 0.85) ( 0.51) ( 0.63) ( 0.88) ( 0.85) ( 0.91) ( 0.93) ( 0.99) ( 0.13)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 0.18 0.02 0.00 0.00 0.00 0.00 0.00 13.17
p-valuefm ( 0.86) ( 0.85) ( 0.82) ( 0.88) ( 0.86) ( 0.92) ( 0.93) ( 0.98) ( 0.00)
LRs 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 11.76
p-valuefm ( 0.86) ( 0.90) ( 0.83) ( 0.88) ( 0.85) ( 0.92) ( 0.93) ( 0.98) ( 0.01)
LRjw 0.00 0.06 0.01 0.00 0.00 0.00 0.00 0.00 8.64
p-valuejw ( 0.86) ( 0.90) ( 0.82) ( 0.88) ( 0.85) ( 0.92) ( 0.93) ( 0.98) ( 0.03)
LRpm 0.00 0.05 0.01 0.00 0.00 0.00 0.00 0.00 5.50
p-valuepm ( 0.86) ( 0.91) ( 0.83) ( 0.88) ( 0.85) ( 0.91) ( 0.93) ( 0.99) ( 0.11)
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Table VI.2
Robust Multiple Sign Restriction Tests of the Models Using the 25 Size and

Momentum Portfolios as Test Assets
Zero restrictions are imposed if the state variables are not robust predictors

The table presents the results of the multiple sign restriction test of nine asset-pricing models for the case
where we impose sign restrictions only if the respective coefficient estimates from the long-horizon predictive
regressions are statistically significant; otherwise a zero restriction is imposed. This is a likelihood ratio test
of the null hypothesis that the models satisfy the sign restrictions placed by the ICAPM H0 : Qλ ≥ 0K .
The models include the ICAPM specifications proposed by Hahn and Lee (2006)(HL), Petkova (2006) (P),
Campbell and Vuolteenaho (2004) (CV), Koijen, Lustig, and Van Nieuwerburgh (2017) (KLVN), the Fama
and French (1993) three-factor model (FF3), the Carhart (1997) model (C), the Pastor and Stambaugh (2003)
model (PS), the Fama and French (1993) three-factor model augmented by TERM and DEF (FFTD), and
the Fama and French (2015) five-factor model (FF5). The models are estimated using monthly excess returns
on the 25 Fama-French size and book-to-market ranked portfolios. The data are from July 1963 to December
2018 (666 observations). We report the values of the likelihood ratio statistics and corresponding p-values
obtained using the Fama and MacBeth (1973) variances under correctly specified models (LRfm and p-
valuefm), the Shanken (1992) and the Jagannathan and Wang (1998) variances under correctly specified
models that account for the EIV problem (LRs and p-values, and LRjw and p-valuejw, respectively), and
our model misspecification-robust variances (LRpm and p-valuejw).

Panel A: OLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 2.49 25.48 20.69 0.00 6.50 0.00 30.94 35.65 11.73
p-valuefm ( 0.21) ( 0.00) ( 0.00) ( 0.88) ( 0.03) ( 0.93) ( 0.00) ( 0.00) ( 0.01)
LRs 0.79 5.21 3.59 0.00 5.98 0.00 4.65 5.49 5.20
p-valuefm ( 0.50) ( 0.12) ( 0.15) ( 0.88) ( 0.04) ( 0.93) ( 0.11) ( 0.12) ( 0.13)
LRjw 0.67 2.78 2.52 0.00 5.91 0.00 1.99 2.53 2.45
p-valuejw ( 0.52) ( 0.33) ( 0.25) ( 0.88) ( 0.04) ( 0.92) ( 0.35) ( 0.39) ( 0.39)
LRpm 0.50 2.39 4.88 0.00 3.48 0.00 3.31 4.05 1.84
p-valuepm ( 0.56) ( 0.37) ( 0.09) ( 0.88) ( 0.12) ( 0.92) ( 0.21) ( 0.21) ( 0.49)

Panel B: GLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 0.00 9.83 1.14 0.00 0.00 0.00 0.00 3.87 17.32
p-valuefm ( 0.86) ( 0.02) ( 0.48) ( 0.88) ( 0.85) ( 0.93) ( 0.92) ( 0.23) ( 0.00)
LRs 0.00 4.22 1.09 0.00 0.00 0.00 0.00 3.02 10.45
p-valuefm ( 0.86) ( 0.19) ( 0.49) ( 0.88) ( 0.85) ( 0.93) ( 0.92) ( 0.31) ( 0.01)
LRjw 0.00 3.37 1.04 0.00 0.00 0.00 0.00 2.30 6.82
p-valuejw ( 0.86) ( 0.26) ( 0.50) ( 0.88) ( 0.85) ( 0.92) ( 0.92) ( 0.42) ( 0.07)
LRpm 0.00 2.04 0.34 0.00 0.00 0.00 0.00 1.12 4.20
p-valuepm ( 0.85) ( 0.44) ( 0.68) ( 0.88) ( 0.85) ( 0.92) ( 0.92) ( 0.65) ( 0.20)

Panel C: WLS
HL P CV KLVN FF3 C PS FFTD FF5

LRfm 3.37 16.82 14.52 0.00 3.40 0.00 16.71 28.67 10.42
p-valuefm ( 0.13) ( 0.00) ( 0.00) ( 0.88) ( 0.13) ( 0.93) ( 0.00) ( 0.00) ( 0.01)
LRs 1.75 4.38 4.22 0.00 3.20 0.00 5.96 6.90 5.05
p-valuefm ( 0.30) ( 0.17) ( 0.12) ( 0.88) ( 0.14) ( 0.93) ( 0.06) ( 0.06) ( 0.14)
LRjw 1.61 2.45 3.02 0.00 3.40 0.00 2.85 3.19 2.46
p-valuejw ( 0.31) ( 0.37) ( 0.20) ( 0.88) ( 0.13) ( 0.92) ( 0.25) ( 0.30) ( 0.39)
LRpm 1.11 0.96 5.22 0.00 2.74 0.00 1.98 7.40 2.06
p-valuepm ( 0.40) ( 0.62) ( 0.08) ( 0.88) ( 0.18) ( 0.92) ( 0.36) ( 0.05) ( 0.45)
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